Bioinformatics approaches to multi-omics analysis of the potential of CDKN2A as a biomarker and therapeutic target for uterine corpus endometrial carcinoma

Abstract Uterine corpus endometrial carcinoma (UCEC) is a significant cause of cancer-related mortality among women worldwide. Prior research has demonstrated an association between cyclin-dependent kinase inhibitor 2 A (CDKN2A) and various tumors. As a member of the INK4 family, CDKN2A is involved...

Full description

Saved in:
Bibliographic Details
Main Authors: Liang Ma, Yuling Li, Jingxian Wu, Yanfei Gao
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-85364-w
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Uterine corpus endometrial carcinoma (UCEC) is a significant cause of cancer-related mortality among women worldwide. Prior research has demonstrated an association between cyclin-dependent kinase inhibitor 2 A (CDKN2A) and various tumors. As a member of the INK4 family, CDKN2A is involved in cell cycle regulation by controlling CDKs. In the present study, bioinformatics was used to analyze public datasets. The expression levels, signaling pathways, and copy number variations of CDKN2A in UCEC were explored, along with its immune cell subset associations. CDKN2A expression was found to be elevated in UCEC, particularly in the signaling pathways involved in cell proliferation and inflammation. Analysis of somatic copy number alterations in the TCGA (The Cancer Genome Atlas)-UCEC dataset revealed a connection between CDKN2A and drug metabolism in UCEC. Assessment of the relationship between CDKN2A and genes involved in immunotherapy for UCEC patients showed a negative correlation between CDKN2A and CD8+ T cell activity, as well as IL-2 and TP53. Collectively, these insights suggest that CDKN2A may be a potential biomarker for prognosis and treatment strategies in UCEC.
ISSN:2045-2322