Current Sensor with Optimized Linearity for Lightning Impulse Current Measurement
Impulse current measurement technology is widely used in various applications, including lightning protection monitoring in power systems, welding current measurement in aircraft and shipbuilding industries, as well as high-current measurement in pulsed power systems. With the advancement of industr...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/14/4516 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Impulse current measurement technology is widely used in various applications, including lightning protection monitoring in power systems, welding current measurement in aircraft and shipbuilding industries, as well as high-current measurement in pulsed power systems. With the advancement of industrial technology, the measurement range of impulse currents has continuously expanded, reaching levels as high as mega-amperes (MA). The calibration of the scale factor for impulse current measurement devices is determined through comparison with standard measurement devices. Developing high-accuracy impulse current measurement devices and accurately judging their characteristics are prerequisites for ensuring the precise calibration of impulse current values. This paper introduces two different types of high-impulse current measurement devices. Experimental studies were conducted on the scale factor and response characteristics of the sensors. The scale factor extension calibration method for sensors under high currents of more than 100 kA has also been introduced. Test results indicate that the developed impulse current measurement devices can serve as standard measurement devices for high impulse current measurement. |
|---|---|
| ISSN: | 1424-8220 |