Nanodiamond-mediated delivery of microRNA-7 for the neuroprotection of dopaminergic neurons
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the gradual loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein aggregates known as Lewy bodies. MicroRNA-7 (miR-7) targets the gene SNCA, which encodes α-synuclein, reducing its expression...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2025-01-01
|
Series: | Frontiers in Bioengineering and Biotechnology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fbioe.2024.1480573/full |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the gradual loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein aggregates known as Lewy bodies. MicroRNA-7 (miR-7) targets the gene SNCA, which encodes α-synuclein, reducing its expression and alleviating neuronal damage in PD. Regulating the post-transcriptional levels of α-synuclein through miR-7 effectively inhibits its production. Herein, we use nanodiamonds as carriers to deliver miR-7 (N-7), which can effectively protect dopaminergic neurons. Dopaminergic neurons efficiently take up N-7 and express miR-7. N-7 inhibits the expression of α-synuclein, reduces oxidative stress and restores dopamine levels effectively. These findings suggest that nanocomposites have significant potential in treating PD. |
---|---|
ISSN: | 2296-4185 |