Personal model‐assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD

Abstract To elucidate the molecular mechanisms underlying non‐alcoholic fatty liver disease (NAFLD), we recruited 86 subjects with varying degrees of hepatic steatosis (HS). We obtained experimental data on lipoprotein fluxes and used these individual measurements as personalized constraints of a he...

Full description

Saved in:
Bibliographic Details
Main Authors: Adil Mardinoglu, Elias Bjornson, Cheng Zhang, Martina Klevstig, Sanni Söderlund, Marcus Ståhlman, Martin Adiels, Antti Hakkarainen, Nina Lundbom, Murat Kilicarslan, Björn M Hallström, Jesper Lundbom, Bruno Vergès, Peter Hugh R Barrett, Gerald F Watts, Mireille J Serlie, Jens Nielsen, Mathias Uhlén, Ulf Smith, Hanns‐Ulrich Marschall, Marja‐Riitta Taskinen, Jan Boren
Format: Article
Language:English
Published: Springer Nature 2017-03-01
Series:Molecular Systems Biology
Subjects:
Online Access:https://doi.org/10.15252/msb.20167422
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841544169829433344
author Adil Mardinoglu
Elias Bjornson
Cheng Zhang
Martina Klevstig
Sanni Söderlund
Marcus Ståhlman
Martin Adiels
Antti Hakkarainen
Nina Lundbom
Murat Kilicarslan
Björn M Hallström
Jesper Lundbom
Bruno Vergès
Peter Hugh R Barrett
Gerald F Watts
Mireille J Serlie
Jens Nielsen
Mathias Uhlén
Ulf Smith
Hanns‐Ulrich Marschall
Marja‐Riitta Taskinen
Jan Boren
author_facet Adil Mardinoglu
Elias Bjornson
Cheng Zhang
Martina Klevstig
Sanni Söderlund
Marcus Ståhlman
Martin Adiels
Antti Hakkarainen
Nina Lundbom
Murat Kilicarslan
Björn M Hallström
Jesper Lundbom
Bruno Vergès
Peter Hugh R Barrett
Gerald F Watts
Mireille J Serlie
Jens Nielsen
Mathias Uhlén
Ulf Smith
Hanns‐Ulrich Marschall
Marja‐Riitta Taskinen
Jan Boren
author_sort Adil Mardinoglu
collection DOAJ
description Abstract To elucidate the molecular mechanisms underlying non‐alcoholic fatty liver disease (NAFLD), we recruited 86 subjects with varying degrees of hepatic steatosis (HS). We obtained experimental data on lipoprotein fluxes and used these individual measurements as personalized constraints of a hepatocyte genome‐scale metabolic model to investigate metabolic differences in liver, taking into account its interactions with other tissues. Our systems level analysis predicted an altered demand for NAD+ and glutathione (GSH) in subjects with high HS. Our analysis and metabolomic measurements showed that plasma levels of glycine, serine, and associated metabolites are negatively correlated with HS, suggesting that these GSH metabolism precursors might be limiting. Quantification of the hepatic expression levels of the associated enzymes further pointed to altered de novo GSH synthesis. To assess the effect of GSH and NAD+ repletion on the development of NAFLD, we added precursors for GSH and NAD+ biosynthesis to the Western diet and demonstrated that supplementation prevents HS in mice. In a proof‐of‐concept human study, we found improved liver function and decreased HS after supplementation with serine (a precursor to glycine) and hereby propose a strategy for NAFLD treatment.
format Article
id doaj-art-e43610ba34b24032ab9bcfbc35617cd8
institution Kabale University
issn 1744-4292
language English
publishDate 2017-03-01
publisher Springer Nature
record_format Article
series Molecular Systems Biology
spelling doaj-art-e43610ba34b24032ab9bcfbc35617cd82025-01-12T12:45:33ZengSpringer NatureMolecular Systems Biology1744-42922017-03-0113311710.15252/msb.20167422Personal model‐assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLDAdil Mardinoglu0Elias Bjornson1Cheng Zhang2Martina Klevstig3Sanni Söderlund4Marcus Ståhlman5Martin Adiels6Antti Hakkarainen7Nina Lundbom8Murat Kilicarslan9Björn M Hallström10Jesper Lundbom11Bruno Vergès12Peter Hugh R Barrett13Gerald F Watts14Mireille J Serlie15Jens Nielsen16Mathias Uhlén17Ulf Smith18Hanns‐Ulrich Marschall19Marja‐Riitta Taskinen20Jan Boren21Science for Life Laboratory, KTH – Royal Institute of TechnologyDepartment of Biology and Biological Engineering, Chalmers University of TechnologyScience for Life Laboratory, KTH – Royal Institute of TechnologyDepartment of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University HospitalResearch programs Unit, Diabetes and Obesity, Helsinki University Hospital, University of HelsinkiDepartment of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University HospitalDepartment of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University HospitalDepartment of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of HelsinkiDepartment of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of HelsinkiDepartment of Endocrinology and Metabolism, Academic Medical Center, University of AmsterdamScience for Life Laboratory, KTH – Royal Institute of TechnologyDepartment of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of HelsinkiDepartment of Endocrinology–Diabetology, University Hospital and INSERM CRI 866Faculty of Engineering, Computing and Mathematics, University of Western AustraliaMetabolic Research Centre, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western AustraliaDepartment of Endocrinology and Metabolism, Academic Medical Center, University of AmsterdamScience for Life Laboratory, KTH – Royal Institute of TechnologyScience for Life Laboratory, KTH – Royal Institute of TechnologyDepartment of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University HospitalDepartment of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University HospitalResearch programs Unit, Diabetes and Obesity, Helsinki University Hospital, University of HelsinkiDepartment of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University HospitalAbstract To elucidate the molecular mechanisms underlying non‐alcoholic fatty liver disease (NAFLD), we recruited 86 subjects with varying degrees of hepatic steatosis (HS). We obtained experimental data on lipoprotein fluxes and used these individual measurements as personalized constraints of a hepatocyte genome‐scale metabolic model to investigate metabolic differences in liver, taking into account its interactions with other tissues. Our systems level analysis predicted an altered demand for NAD+ and glutathione (GSH) in subjects with high HS. Our analysis and metabolomic measurements showed that plasma levels of glycine, serine, and associated metabolites are negatively correlated with HS, suggesting that these GSH metabolism precursors might be limiting. Quantification of the hepatic expression levels of the associated enzymes further pointed to altered de novo GSH synthesis. To assess the effect of GSH and NAD+ repletion on the development of NAFLD, we added precursors for GSH and NAD+ biosynthesis to the Western diet and demonstrated that supplementation prevents HS in mice. In a proof‐of‐concept human study, we found improved liver function and decreased HS after supplementation with serine (a precursor to glycine) and hereby propose a strategy for NAFLD treatment.https://doi.org/10.15252/msb.20167422glutathioneNAFLDpersonalized genome‐scale metabolic modelingserine
spellingShingle Adil Mardinoglu
Elias Bjornson
Cheng Zhang
Martina Klevstig
Sanni Söderlund
Marcus Ståhlman
Martin Adiels
Antti Hakkarainen
Nina Lundbom
Murat Kilicarslan
Björn M Hallström
Jesper Lundbom
Bruno Vergès
Peter Hugh R Barrett
Gerald F Watts
Mireille J Serlie
Jens Nielsen
Mathias Uhlén
Ulf Smith
Hanns‐Ulrich Marschall
Marja‐Riitta Taskinen
Jan Boren
Personal model‐assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD
Molecular Systems Biology
glutathione
NAFLD
personalized genome‐scale metabolic modeling
serine
title Personal model‐assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD
title_full Personal model‐assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD
title_fullStr Personal model‐assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD
title_full_unstemmed Personal model‐assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD
title_short Personal model‐assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD
title_sort personal model assisted identification of nad and glutathione metabolism as intervention target in nafld
topic glutathione
NAFLD
personalized genome‐scale metabolic modeling
serine
url https://doi.org/10.15252/msb.20167422
work_keys_str_mv AT adilmardinoglu personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT eliasbjornson personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT chengzhang personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT martinaklevstig personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT sannisoderlund personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT marcusstahlman personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT martinadiels personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT anttihakkarainen personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT ninalundbom personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT muratkilicarslan personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT bjornmhallstrom personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT jesperlundbom personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT brunoverges personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT peterhughrbarrett personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT geraldfwatts personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT mireillejserlie personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT jensnielsen personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT mathiasuhlen personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT ulfsmith personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT hannsulrichmarschall personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT marjariittataskinen personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld
AT janboren personalmodelassistedidentificationofnadandglutathionemetabolismasinterventiontargetinnafld