Corrections to “Efficient Multi-Object Recognition Using GMM Segmentation Feature Fusion Approach”

Presents corrections to the paper, (Corrections to “Efficient Multi-Object Recognition Using GMM Segmentation Feature Fusion Approach”).

Saved in:
Bibliographic Details
Main Authors: Aysha Naseer, Hamdan A. Alzahrani, Nouf Abdullah Almujally, Khaled Al Nowaiser, Naif Al Mudawi, Asaad Algarni, Jeongmin Park
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Access
Online Access:https://ieeexplore.ieee.org/document/10747778/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846172994992340992
author Aysha Naseer
Hamdan A. Alzahrani
Nouf Abdullah Almujally
Khaled Al Nowaiser
Naif Al Mudawi
Asaad Algarni
Jeongmin Park
author_facet Aysha Naseer
Hamdan A. Alzahrani
Nouf Abdullah Almujally
Khaled Al Nowaiser
Naif Al Mudawi
Asaad Algarni
Jeongmin Park
author_sort Aysha Naseer
collection DOAJ
description Presents corrections to the paper, (Corrections to “Efficient Multi-Object Recognition Using GMM Segmentation Feature Fusion Approach”).
format Article
id doaj-art-e417e0fa28ad4b9ca2da6f91a77427d5
institution Kabale University
issn 2169-3536
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj-art-e417e0fa28ad4b9ca2da6f91a77427d52024-11-09T00:00:59ZengIEEEIEEE Access2169-35362024-01-011216310916310910.1109/ACCESS.2024.348887210747778Corrections to “Efficient Multi-Object Recognition Using GMM Segmentation Feature Fusion Approach”Aysha Naseer0Hamdan A. Alzahrani1Nouf Abdullah Almujally2Khaled Al Nowaiser3Naif Al Mudawi4Asaad Algarni5https://orcid.org/0000-0002-0817-5775Jeongmin Park6https://orcid.org/0000-0001-8027-0876Department of Computer Science, Air University, Islamabad, PakistanInformation Technology Department, College of Computing and Informatics, Saudi Electronic University, Riyadh, Saudi ArabiaDepartment of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428,, Riyadh, Saudi ArabiaDepartment of Computer Engineering, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi ArabiaDepartment of Computer Science, College of Computer Science and Information System, Najran University, Najran, Saudi ArabiaDepartment of Computer Sciences, Faculty of Computing and Information Technology, Northern Border University, Rafha, Saudi ArabiaDepartment of Computer Engineering, Tech University of Korea, Siheung-si, Gyeonggi-do, South KoreaPresents corrections to the paper, (Corrections to “Efficient Multi-Object Recognition Using GMM Segmentation Feature Fusion Approach”).https://ieeexplore.ieee.org/document/10747778/
spellingShingle Aysha Naseer
Hamdan A. Alzahrani
Nouf Abdullah Almujally
Khaled Al Nowaiser
Naif Al Mudawi
Asaad Algarni
Jeongmin Park
Corrections to “Efficient Multi-Object Recognition Using GMM Segmentation Feature Fusion Approach”
IEEE Access
title Corrections to “Efficient Multi-Object Recognition Using GMM Segmentation Feature Fusion Approach”
title_full Corrections to “Efficient Multi-Object Recognition Using GMM Segmentation Feature Fusion Approach”
title_fullStr Corrections to “Efficient Multi-Object Recognition Using GMM Segmentation Feature Fusion Approach”
title_full_unstemmed Corrections to “Efficient Multi-Object Recognition Using GMM Segmentation Feature Fusion Approach”
title_short Corrections to “Efficient Multi-Object Recognition Using GMM Segmentation Feature Fusion Approach”
title_sort corrections to x201c efficient multi object recognition using gmm segmentation feature fusion approach x201d
url https://ieeexplore.ieee.org/document/10747778/
work_keys_str_mv AT ayshanaseer correctionstox201cefficientmultiobjectrecognitionusinggmmsegmentationfeaturefusionapproachx201d
AT hamdanaalzahrani correctionstox201cefficientmultiobjectrecognitionusinggmmsegmentationfeaturefusionapproachx201d
AT noufabdullahalmujally correctionstox201cefficientmultiobjectrecognitionusinggmmsegmentationfeaturefusionapproachx201d
AT khaledalnowaiser correctionstox201cefficientmultiobjectrecognitionusinggmmsegmentationfeaturefusionapproachx201d
AT naifalmudawi correctionstox201cefficientmultiobjectrecognitionusinggmmsegmentationfeaturefusionapproachx201d
AT asaadalgarni correctionstox201cefficientmultiobjectrecognitionusinggmmsegmentationfeaturefusionapproachx201d
AT jeongminpark correctionstox201cefficientmultiobjectrecognitionusinggmmsegmentationfeaturefusionapproachx201d