Multi-target digital material design via a conditional denoising diffusion probability model
Abstract Multi-target digital material design has been challenging due to the expansive design space and instability of traditional methods in satisfying multiple objectives. This work proposes and demonstrates a customizer based on a classifier-free, conditional denoising diffusion probability mode...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-08-01
|
| Series: | npj Computational Materials |
| Online Access: | https://doi.org/10.1038/s41524-025-01759-3 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Multi-target digital material design has been challenging due to the expansive design space and instability of traditional methods in satisfying multiple objectives. This work proposes and demonstrates a customizer based on a classifier-free, conditional denoising diffusion probability model (cDDPM) to efficiently create the layouts of digital materials meeting the design goal of multiple mechanical properties all together. A case study has been conducted based on a micro mechanical resonator with four pre-assigned resonant frequencies. Using 29,430 samples generated via finite element analysis (FEA), the cDDPM is trained to simultaneously customize up to four vibrational modes, achieving over 95% prediction accuracy. Furthermore, the cDDPM approach also shows superior performances in the single-target customization for up to 99% in prediction accuracy when compared with traditional conditional generative adversarial networks (cGANs). As such, the proposed design framework provides a highly customizable and robust methodology for the design of complicated digital materials. |
|---|---|
| ISSN: | 2057-3960 |