Multimodality deep learning radiomics predicts pathological response after neoadjuvant chemoradiotherapy for esophageal squamous cell carcinoma
Abstract Objectives This study aimed to develop and validate a deep-learning radiomics model using CT, T2, and DWI images for predicting pathological complete response (pCR) in patients with esophageal squamous cell carcinoma (ESCC) undergoing neoadjuvant chemoradiotherapy (nCRT). Materials and meth...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SpringerOpen
2024-11-01
|
| Series: | Insights into Imaging |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s13244-024-01851-0 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|