Capacity and Coverage Dimensioning for 5G Standalone Mixed-Cell Architecture: An Impact of Using Existing 4G Infrastructure

With the increasing demand for expected data volume daily, current telecommunications infrastructure can not meet requirements without using enhanced technologies adopted by 5G and beyond networks. Due to their diverse features, 5G technologies and services will be phenomenal in the coming days. Pro...

Full description

Saved in:
Bibliographic Details
Main Authors: Naba Raj Khatiwoda, Babu Ram Dawadi, Sashidhar Ram Joshi
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Future Internet
Subjects:
Online Access:https://www.mdpi.com/1999-5903/16/11/423
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the increasing demand for expected data volume daily, current telecommunications infrastructure can not meet requirements without using enhanced technologies adopted by 5G and beyond networks. Due to their diverse features, 5G technologies and services will be phenomenal in the coming days. Proper planning procedures are to be adopted to provide cost-effective and quality telecommunication services. In this paper, we planned 5G network deployment in two frequency ranges, 3.5 GHz and 28 GHz, using a mixed cell structure. We used metaheuristic approaches such as Grey Wolf Optimization (GWO), Sparrow Search Algorithm (SSA), Whale Optimization Algorithm (WOA), Marine Predator Algorithm (MPA), Particle Swarm Optimization (PSO), and Ant Lion Optimization (ALO) for optimizing the locations of remote radio units. The comparative analysis of metaheuristic algorithms shows that the proposed network is efficient in providing an average data rate of 50 Mbps, can meet the coverage requirements of at least 98%, and meets quality-of-service requirements. We carried out the case study for an urban area and another suburban area of Kathmandu Valley, Nepal. We analyzed the outcomes of 5G greenfield deployment and 5G deployment using existing 4G infrastructure. Deploying 5G networks using existing 4G infrastructure, resources can be saved up to 33.7% and 54.2% in urban and suburban areas, respectively.
ISSN:1999-5903