Extended Symmetry of Higher Painlevé Equations of Even Periodicity and Their Rational Solutions

The structure of the extended affine Weyl symmetry group of higher Painlevé equations of <i>N</i> periodicity depends on whether <i>N</i> is even or odd. We find that for even <i>N</i>, the symmetry group <inline-formula><math xmlns="http://www.w3.or...

Full description

Saved in:
Bibliographic Details
Main Authors: Henrik Aratyn, José Francisco Gomes, Gabriel Vieira Lobo, Abraham Hirsz Zimerman
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/23/3701
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846124176318922752
author Henrik Aratyn
José Francisco Gomes
Gabriel Vieira Lobo
Abraham Hirsz Zimerman
author_facet Henrik Aratyn
José Francisco Gomes
Gabriel Vieira Lobo
Abraham Hirsz Zimerman
author_sort Henrik Aratyn
collection DOAJ
description The structure of the extended affine Weyl symmetry group of higher Painlevé equations of <i>N</i> periodicity depends on whether <i>N</i> is even or odd. We find that for even <i>N</i>, the symmetry group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mover accent="true"><mi>A</mi><mo>^</mo></mover></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></semantics></math></inline-formula> contains the conventional Bäcklund transformations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>s</mi><mi>j</mi></msub><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi></mrow></semantics></math></inline-formula>, the group of automorphisms consisting of cycling permutations but also reflections on a periodic circle of <i>N</i> points, which is a novel feature uncovered in this paper. The presence of reflection automorphisms is connected to the existence of degenerated solutions, and for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula>, we explicitly show how even reflection automorphisms cause degeneracy of a class of rational solutions obtained on the orbit of the translation operators of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mover accent="true"><mi>A</mi><mo>^</mo></mover></mrow><mn>3</mn><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></semantics></math></inline-formula>. We obtain the closed expressions for the solutions and their degenerated counterparts in terms of the determinants of the Kummer polynomials.
format Article
id doaj-art-e05ddae2e46441c5a8e6cd6b16b2da9d
institution Kabale University
issn 2227-7390
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-e05ddae2e46441c5a8e6cd6b16b2da9d2024-12-13T16:27:28ZengMDPI AGMathematics2227-73902024-11-011223370110.3390/math12233701Extended Symmetry of Higher Painlevé Equations of Even Periodicity and Their Rational SolutionsHenrik Aratyn0José Francisco Gomes1Gabriel Vieira Lobo2Abraham Hirsz Zimerman3Department of Physics, University of Illinois at Chicago, 845 W. Taylor Str., Chicago, IL 60607-7059, USAInstituto de Física Teórica-UNESP, Rua Dr Bento Teobaldo Ferraz 271, Bloco II, São Paulo 01140-070, BrazilInstituto de Física Teórica-UNESP, Rua Dr Bento Teobaldo Ferraz 271, Bloco II, São Paulo 01140-070, BrazilInstituto de Física Teórica-UNESP, Rua Dr Bento Teobaldo Ferraz 271, Bloco II, São Paulo 01140-070, BrazilThe structure of the extended affine Weyl symmetry group of higher Painlevé equations of <i>N</i> periodicity depends on whether <i>N</i> is even or odd. We find that for even <i>N</i>, the symmetry group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mover accent="true"><mi>A</mi><mo>^</mo></mover></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></semantics></math></inline-formula> contains the conventional Bäcklund transformations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>s</mi><mi>j</mi></msub><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi></mrow></semantics></math></inline-formula>, the group of automorphisms consisting of cycling permutations but also reflections on a periodic circle of <i>N</i> points, which is a novel feature uncovered in this paper. The presence of reflection automorphisms is connected to the existence of degenerated solutions, and for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula>, we explicitly show how even reflection automorphisms cause degeneracy of a class of rational solutions obtained on the orbit of the translation operators of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mover accent="true"><mi>A</mi><mo>^</mo></mover></mrow><mn>3</mn><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></semantics></math></inline-formula>. We obtain the closed expressions for the solutions and their degenerated counterparts in terms of the determinants of the Kummer polynomials.https://www.mdpi.com/2227-7390/12/23/3701Painlevé equationsaffine Weyl symmetriesBäcklund transformationsdressing chain equationsKummer polynomials
spellingShingle Henrik Aratyn
José Francisco Gomes
Gabriel Vieira Lobo
Abraham Hirsz Zimerman
Extended Symmetry of Higher Painlevé Equations of Even Periodicity and Their Rational Solutions
Mathematics
Painlevé equations
affine Weyl symmetries
Bäcklund transformations
dressing chain equations
Kummer polynomials
title Extended Symmetry of Higher Painlevé Equations of Even Periodicity and Their Rational Solutions
title_full Extended Symmetry of Higher Painlevé Equations of Even Periodicity and Their Rational Solutions
title_fullStr Extended Symmetry of Higher Painlevé Equations of Even Periodicity and Their Rational Solutions
title_full_unstemmed Extended Symmetry of Higher Painlevé Equations of Even Periodicity and Their Rational Solutions
title_short Extended Symmetry of Higher Painlevé Equations of Even Periodicity and Their Rational Solutions
title_sort extended symmetry of higher painleve equations of even periodicity and their rational solutions
topic Painlevé equations
affine Weyl symmetries
Bäcklund transformations
dressing chain equations
Kummer polynomials
url https://www.mdpi.com/2227-7390/12/23/3701
work_keys_str_mv AT henrikaratyn extendedsymmetryofhigherpainleveequationsofevenperiodicityandtheirrationalsolutions
AT josefranciscogomes extendedsymmetryofhigherpainleveequationsofevenperiodicityandtheirrationalsolutions
AT gabrielvieiralobo extendedsymmetryofhigherpainleveequationsofevenperiodicityandtheirrationalsolutions
AT abrahamhirszzimerman extendedsymmetryofhigherpainleveequationsofevenperiodicityandtheirrationalsolutions