HPTLC Combined with sHetCA and Multivariate Statistics for the Detection of Bioactive Compounds in Complex Mixtures

High-Performance Thin Layer Chromatography (HPTLC) is widely utilized in natural products research due to its simplicity, low cost, and short total analysis time, including data treatment. While bioautography can be used for rapid detection of bioactive compounds in extracts, the number of available...

Full description

Saved in:
Bibliographic Details
Main Authors: Vaios Amountzias, Evagelos Gikas, Nektarios Aligiannis
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/29/24/6027
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-Performance Thin Layer Chromatography (HPTLC) is widely utilized in natural products research due to its simplicity, low cost, and short total analysis time, including data treatment. While bioautography can be used for rapid detection of bioactive compounds in extracts, the number of available bioautographic methods is limited mainly due to the high cost and difficulty in developing protocols that lead to accurate and reproducible results. For this reason, an alternative method for the detection of bioactive compounds in plant extracts prior to their isolation using HPTLC, combined with multivariate chemometrics, was previously explored by our lab. To evaluate this method and compare it to other chemometrics-based methods, an artificial mixture (ArtExtr) of 59 standard compounds was used as a case study. The ArtExtr was fractionated by FCPC and the inhibitory activity of all fractions against DPPH was evaluated, while their chemical profiles were recorded using HPTLC. Multivariate statistics and the heterocovariance approach (HetCA) were employed and compared, with the success rate in detecting the ArtExtr bioactive substances being 85.7% via sparse heterocovariance (sHetCA). HPTLC combined with sHetCA can serve as a valuable tool for the detection of bioactive compounds in complex mixtures when bioautography is not feasible.
ISSN:1420-3049