Monodentate Ligands in X-Cu(I)-Y Complexes—Structural Aspects

This structural study examines over 102 coordinate Cu(I) complexes with compositions such as C-Cu-Y (Y=HL, OL, NL, SL, SiL, BL, PL, Cl, Br, I, AlL, or SnL), N-Cu-Y (Y=OL, Cl), S-Cu-Y (Y=Cl, Br, I), P-Cu-Y (Y=Cl, I), and Se-Cu-Y (Y=Br, I). These complexes crystallize into three different crystal clas...

Full description

Saved in:
Bibliographic Details
Main Authors: Milan Melník, Veronika Mikušová, Peter Mikuš
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Inorganics
Subjects:
Online Access:https://www.mdpi.com/2304-6740/12/11/279
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This structural study examines over 102 coordinate Cu(I) complexes with compositions such as C-Cu-Y (Y=HL, OL, NL, SL, SiL, BL, PL, Cl, Br, I, AlL, or SnL), N-Cu-Y (Y=OL, Cl), S-Cu-Y (Y=Cl, Br, I), P-Cu-Y (Y=Cl, I), and Se-Cu-Y (Y=Br, I). These complexes crystallize into three different crystal classes: monoclinic (seventy-two instances), triclinic (twenty-eight instances), and orthorhombic (eight instances). The Cu-L bond length increases with the covalent radius of the ligating atom. There are two possible geometries for coordination number two: linear and bent. A total of 21 varieties of inner coordination spheres exist, categorized into two hetero-types (C-Cu-Y, i.e., organometallic compounds and X-Cu-Y, i.e., coordination compounds). The structural parameters of hetero Cu(I) complexes were compared with trans-X-Cu (I)-X (homo) complexes and analyzed. The maximum deviations from linearity (180.0°) are, on average, 10.3° for Br-Cu(I)-Br, 16.6° for C-Cu(I)-Sn, and 35.5° for P-Cu(I)-I. These results indicate that ligand properties influence deviation from linearity, increasing in the order of hard < borderline < soft.
ISSN:2304-6740