Research on key technology of cooled infrared bionic compound eye camera based on small lens array
Abstract Traditional 2D imaging technologies are limited by the need for a large field of view and their sensitivity to small target motion. Inspired by the characteristics of insect compound eye structure, we propose an infrared bionic compound eye camera based on a small lens array. The camera is...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2024-05-01
|
| Series: | Scientific Reports |
| Online Access: | https://doi.org/10.1038/s41598-024-61606-1 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Traditional 2D imaging technologies are limited by the need for a large field of view and their sensitivity to small target motion. Inspired by the characteristics of insect compound eye structure, we propose an infrared bionic compound eye camera based on a small lens array. The camera is composed of 61 small lens arrays mounted on a curved spherical shell and a relay optical system. The imaging device is a high-performance cooled mid-wave infrared detector. This is an innovative design for an infrared biomimetic compound eye camera system that provides a wide field of view and all-day detection capability. Aimed to meet the specified requirements. The optical system achieves a 100% cold-membrane match between the infrared optical system and the cooled detector, and the relay optical system optimizes the large-field aberration by introducing a higher-order aspheric surface and modifying the geometric surface of the lenses. Our entire system enables an observation field angle of $$108^\circ \times 108^\circ$$ 108 ∘ × 108 ∘ . The experiments showed that the image quality of the system is high, each ommatidium was effective within the imaging range of the compound eye camera, resulting in an improved signal-to-noise ratio in various scenes. |
|---|---|
| ISSN: | 2045-2322 |