Flexibly actuated pneumatic extrusion with in-situ monitoring for direct ink writing of heterogeneous and pressure-vulnerable materials
Abstract This study presents a novel piston-driven pneumatic extrusion system for direct ink writing (DIW), featuring flexible actuation and real-time monitoring of extrusion pressure. The design integrates the benefits of both pressure and feedrate control, achieving consistent linewidth while safe...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-08-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-15164-9 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract This study presents a novel piston-driven pneumatic extrusion system for direct ink writing (DIW), featuring flexible actuation and real-time monitoring of extrusion pressure. The design integrates the benefits of both pressure and feedrate control, achieving consistent linewidth while safeguarding pressure-sensitive materials such as cell-laden hydrogels. The system comprises a lightweight pneumatic syringe on the printhead and a stationary actuation unit, allowing efficient decoupling of motion and extrusion. Experiments demonstrate stable gelatin extrusion with a mean linewidth of 4.32 mm and a minimal increase ratio of 0.012 over printing distance. These findings show promise for advancing DIW with emerging soft materials, particularly in bioprinting and sustainable manufacturing. |
|---|---|
| ISSN: | 2045-2322 |