Quality assessment for large-aperture optical elements inducing phase jumps
Achieving complex pulses with high-power lasers necessitates rigorous testing of specially designed optical components. The qualification of these components using complementary devices to access both the high-resolution and the large-aperture properties, followed by validation using propagation sim...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Cambridge University Press
2024-01-01
|
| Series: | High Power Laser Science and Engineering |
| Subjects: | |
| Online Access: | https://www.cambridge.org/core/product/identifier/S2095471924000598/type/journal_article |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Achieving complex pulses with high-power lasers necessitates rigorous testing of specially designed optical components. The qualification of these components using complementary devices to access both the high-resolution and the large-aperture properties, followed by validation using propagation simulations, is proposed here. In particular, the topology of a large-aperture staircase-like Fresnel phase plate used to generate vortex pulses is qualified using a non-contact optical profiler and a large-aperture wavefront measurement setup based on a Shack–Hartmann sensor. The resulting topography is further used for simulating the focus of laser beams after passing through the phase plate. Step height distribution effects on the doughnut-shaped focus are identified, and avoiding the indicated pitfall in the design of the phase plate provides at least a 10-fold reduction of the irradiance modulation on the circumference of the focus in the super-Gaussian case. |
|---|---|
| ISSN: | 2095-4719 2052-3289 |