Memristor-Based Neuromorphic System for Unsupervised Online Learning and Network Anomaly Detection on Edge Devices

An ultralow-power, high-performance online-learning and anomaly-detection system has been developed for edge security applications. Designed to support personalized learning without relying on cloud data processing, the system employs sample-wise learning, eliminating the need for storing entire dat...

Full description

Saved in:
Bibliographic Details
Main Authors: Md Shahanur Alam, Chris Yakopcic, Raqibul Hasan, Tarek M. Taha
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Information
Subjects:
Online Access:https://www.mdpi.com/2078-2489/16/3/222
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An ultralow-power, high-performance online-learning and anomaly-detection system has been developed for edge security applications. Designed to support personalized learning without relying on cloud data processing, the system employs sample-wise learning, eliminating the need for storing entire datasets for training. Built using memristor-based analog neuromorphic and in-memory computing techniques, the system integrates two unsupervised autoencoder neural networks—one utilizing optimized crossbar weights and the other performing real-time learning to detect novel intrusions. Threshold optimization and anomaly detection are achieved through a fully analog Euclidean Distance (ED) computation circuit, eliminating the need for floating-point processing units. The system demonstrates 87% anomaly-detection accuracy; achieves a performance of 16.1 GOPS—774× faster than the ASUS Tinker Board edge processor; and delivers an energy efficiency of 783 GOPS/W, consuming only 20.5 mW during anomaly detection.
ISSN:2078-2489