Increased Fall Precipitation in the Southeastern United States Driven by Higher‐Intensity, Frontal Precipitation

Abstract During 1895‐2018, fall precipitation increased by nearly 40% in the southeastern United States north of the Gulf of Mexico due to increased circulation around the western North Atlantic Subtropical High, which enhanced moisture transports into the region. We find here that these increases i...

Full description

Saved in:
Bibliographic Details
Main Authors: Daniel A. Bishop, A. Park Williams, Richard Seager
Format: Article
Language:English
Published: Wiley 2019-07-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2019GL083177
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract During 1895‐2018, fall precipitation increased by nearly 40% in the southeastern United States north of the Gulf of Mexico due to increased circulation around the western North Atlantic Subtropical High, which enhanced moisture transports into the region. We find here that these increases in southeastern U.S. fall precipitation manifested almost entirely as increases in precipitation intensity, not frequency. Further, the enhanced moisture transports increased precipitation totals far more on the highest‐intensity precipitation days than on the lower‐intensity days, leading to nearly all of the increase to be delivered on extreme (top‐5% intensity) precipitation days. Eighty‐seven percent of the fall precipitation increase was driven by non‐tropical storms (mostly frontal), not tropical cyclones, though the proportion of precipitation falling as either storm type did not change. Further research is needed to evaluate whether these observed precipitation increases are likely to continue, stabilize, or reverse.
ISSN:0094-8276
1944-8007