Technological Progress Toward Peanut Disease Management: A Review

Peanut (<i>Arachis hypogea</i> L.) crops in the southeastern U.S. suffer significant yield losses from diseases like leaf spot, southern blight, and stem rot. Traditionally, growers use conventional boom sprayers, which often leads to overuse and wastage of agrochemicals. However, advanc...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad Asif, Aleena Rayamajhi, Md Sultan Mahmud
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/4/1255
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Peanut (<i>Arachis hypogea</i> L.) crops in the southeastern U.S. suffer significant yield losses from diseases like leaf spot, southern blight, and stem rot. Traditionally, growers use conventional boom sprayers, which often leads to overuse and wastage of agrochemicals. However, advances in computer technologies have enabled the development of precision or variable-rate sprayers, both ground-based and drone-based, that apply agrochemicals more accurately. Historically, crop disease scouting has been labor-intensive and costly. Recent innovations in computer vision, artificial intelligence (AI), and remote sensing have transformed disease identification and scouting, making the process more efficient and economical. Over the past decade, numerous studies have focused on developing technologies for peanut disease scouting and sprayer technology. The current research trend shows significant advancements in precision spraying technologies, facilitating smart spraying capabilities. These advancements include the use of various platforms, such as ground-based and unmanned aerial vehicle (UAV)-based systems, equipped with sensors like RGB (red–blue–green), multispectral, thermal, hyperspectral, light detection and ranging (LiDAR), and other innovative detection technologies, as highlighted in this review. However, despite the availability of some commercial precision sprayers, their effectiveness is limited in managing certain peanut diseases, such as white mold, because the disease affects the roots, and the chemicals often remain in the canopy, failing to reach the soil where treatment is needed. The review concludes that further advances are necessary to develop more precise sprayers that can meet the needs of large-scale farmers and significantly enhance production outcomes. Overall, this review paper aims to provide a review of smart spraying techniques, estimating the required agrochemicals and applying them precisely in peanut fields.
ISSN:1424-8220