HTLV-1 Tax-mediated inhibition of FOXO3a activity is critical for the persistence of terminally differentiated CD4+ T cells.

The mechanisms involved in the persistence of activated CD4+ T lymphocytes following primary human T leukemia/lymphoma virus type 1 (HTLV-1) infection remain unclear. Here, we demonstrate that the HTLV-1 Tax oncoprotein modulates phosphorylation and transcriptional activity of the FOXO3a transcripti...

Full description

Saved in:
Bibliographic Details
Main Authors: David Olagnier, Alexandre Sze, Samar Bel Hadj, Cindy Chiang, Courtney Steel, Xiaoying Han, Jean-Pierre Routy, Rongtuan Lin, John Hiscott, Julien van Grevenynghe
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-12-01
Series:PLoS Pathogens
Online Access:https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1004575&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mechanisms involved in the persistence of activated CD4+ T lymphocytes following primary human T leukemia/lymphoma virus type 1 (HTLV-1) infection remain unclear. Here, we demonstrate that the HTLV-1 Tax oncoprotein modulates phosphorylation and transcriptional activity of the FOXO3a transcription factor, via upstream activation of the AKT pathway. De novo HTLV-1 infection of CD4+ T cells or direct lentiviral-mediated introduction of Tax led to AKT activation and AKT-dependent inactivation of FOXO3a, via phosphorylation of residues Ser253 and Thr32. Inhibition of FOXO3a signalling led to the long-term survival of a population of highly activated, terminally differentiated CD4+Tax+CD27negCCR7neg T cells that maintained the capacity to disseminate infectious HTLV-1. CD4+ T cell persistence was reversed by chemical inhibition of AKT activity, lentiviral-mediated expression of a dominant-negative form of FOXO3a or by specific small interfering RNA (siRNA)-mediated silencing of FOXO3a. Overall this study provides new mechanistic insight into the strategies used by HTLV-1 to increase long-term maintenance of Tax+CD4+ T lymphocytes during the early stages of HTLV-1 pathogenesis.
ISSN:1553-7366
1553-7374