Study on the mechanism of hsa_circ_0074763 regulating the miR-3667-3P/ACSL4 axis in liver fibrosis
Abstract This study aimed to investigate the involvement of hsa_circ_0074763 in the activation of HSCs (hepatic stellate cells ) and liver fibrosis. Additionally, it aimed to conduct a preliminary analysis of the molecular mechanism targeting miR-3667-3p/ACSL4 (Long-chain acyl-CoA synthetase 4), the...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-03-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-91393-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract This study aimed to investigate the involvement of hsa_circ_0074763 in the activation of HSCs (hepatic stellate cells ) and liver fibrosis. Additionally, it aimed to conduct a preliminary analysis of the molecular mechanism targeting miR-3667-3p/ACSL4 (Long-chain acyl-CoA synthetase 4), thereby providing novel molecular targets for liver fibrosis. The GEO database was utilized to identify differentially expressed hsa_circ_0074763 and determined its subcellular localization in LX-2 cells using fluorescence in situ hybridization. Bioinformatics analysis was employed for result prediction, and the interaction between hsa_circ_0074763 and miR-3667-3P was confirmed using dual-luciferase reporter gene assay. ACSL4 mediated ferroptosis was detected with kit. Hsa_circ_0074763 exhibits high expression levels in the fibrosis model. Validation through dual-luciferase reporter gene assays confirms the interaction between hsa_circ_0074763 and miR-3667-3P. Functional cell experiments demonstrate that overexpression of hsa_circ_0074763 promotes proliferation of LX-2 cells, elevates inflammation levels, and inhibits apoptosis. Additionally, ACSL4 has been identified as a direct target of miR-3667-3P, with overexpression of hsa_circ_0074763 counteracting the inhibitory effect on ACSL4 by suppressing miR-3667-3P. Overexpression of ACSL4 increased the expression levels of ROS (Lipid Oxidation), Iron (Ferro Orange) and MDA (Malondialdehyde), and decreased the expression levels of GPX4 (Glutathione peroxidase 4) and GSH (Glutathione). Our finding suggests that overexpression of hsa_circ_0074763 likely enhances the HSC activation through modulation of the miR-3667-3P/ACSL4 axis. Therefore, hsa_circ_0074763 holds potential as a therapeutic target for liver fibrosis. |
|---|---|
| ISSN: | 2045-2322 |