TREM-1-Linked Inflammatory Cargo in SARS-CoV-2-Stimulated Macrophage Extracellular Vesicles Drives Cellular Senescence and Impairs Antibacterial Defense
The COVID-19 pandemic, caused by SARS-CoV-2, has significantly affected global health, with severe inflammatory responses leading to tissue damage and persistent symptoms. Macrophage-derived extracellular vesicles (EVs) are involved in the modulation of immune responses, but their involvement in SAR...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Viruses |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1999-4915/17/5/610 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The COVID-19 pandemic, caused by SARS-CoV-2, has significantly affected global health, with severe inflammatory responses leading to tissue damage and persistent symptoms. Macrophage-derived extracellular vesicles (EVs) are involved in the modulation of immune responses, but their involvement in SARS-CoV-2-induced inflammation and senescence remains unclear. Triggering receptors expressed on myeloid cell-1 (TREM-1) are myeloid cell receptors that amplify inflammation, described as a biomarker of the severity and mortality of COVID-19. This study investigated the composition and effects of macrophage-derived EVs stimulated by SARS-CoV-2 (MφV-EVs) on the recipient cell response. Our results, for the first time, show that SARS-CoV-2 stimulation modifies the cargo profile of MφV-EVs, enriching them with TREM-1 and miRNA-155 association, along with MMP-9 and IL-8/CXCL8. These EVs carry senescence-associated secretory phenotype (SASP) components, promote cellular senescence, and compromise antibacterial defenses upon internalization. Our findings provide evidence that MφV-EVs are key drivers of inflammation and immune dysfunction, underscoring their potential as therapeutic targets in COVID-19. |
|---|---|
| ISSN: | 1999-4915 |