Redesigning error control in cross-linking mass spectrometry enables more robust and sensitive protein-protein interaction studies

Abstract Cross-linking mass spectrometry (XL-MS) allows characterizing protein-protein interactions (PPIs) in native biological systems by capturing cross-links between different proteins (inter-links). However, inter-link identification remains challenging, requiring dedicated data filtering scheme...

Full description

Saved in:
Bibliographic Details
Main Authors: Boris Bogdanow, Max Ruwolt, Julia Ruta, Lars Mühlberg, Cong Wang, Wen-feng Zeng, Arne Elofsson, Fan Liu
Format: Article
Language:English
Published: Springer Nature 2024-12-01
Series:Molecular Systems Biology
Subjects:
Online Access:https://doi.org/10.1038/s44320-024-00079-w
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841559031434444800
author Boris Bogdanow
Max Ruwolt
Julia Ruta
Lars Mühlberg
Cong Wang
Wen-feng Zeng
Arne Elofsson
Fan Liu
author_facet Boris Bogdanow
Max Ruwolt
Julia Ruta
Lars Mühlberg
Cong Wang
Wen-feng Zeng
Arne Elofsson
Fan Liu
author_sort Boris Bogdanow
collection DOAJ
description Abstract Cross-linking mass spectrometry (XL-MS) allows characterizing protein-protein interactions (PPIs) in native biological systems by capturing cross-links between different proteins (inter-links). However, inter-link identification remains challenging, requiring dedicated data filtering schemes and thorough error control. Here, we benchmark existing data filtering schemes combined with error rate estimation strategies utilizing concatenated target-decoy protein sequence databases. These workflows show shortcomings either in sensitivity (many false negatives) or specificity (many false positives). To ameliorate the limited sensitivity without compromising specificity, we develop an alternative target-decoy search strategy using fused target-decoy databases. Furthermore, we devise a different data filtering scheme that takes the inter-link context of the XL-MS dataset into account. Combining both approaches maintains low error rates and minimizes false negatives, as we show by mathematical simulations, analysis of experimental ground-truth data, and application to various biological datasets. In human cells, inter-link identifications increase by 75% and we confirm their structural accuracy through proteome-wide comparisons to AlphaFold2-derived models. Taken together, target-decoy fusion and context-sensitive data filtering deepen and fine-tune XL-MS-based interactomics.
format Article
id doaj-art-daf4c3e09c454cda82ee29eb7daa0a13
institution Kabale University
issn 1744-4292
language English
publishDate 2024-12-01
publisher Springer Nature
record_format Article
series Molecular Systems Biology
spelling doaj-art-daf4c3e09c454cda82ee29eb7daa0a132025-01-05T12:50:44ZengSpringer NatureMolecular Systems Biology1744-42922024-12-012119010610.1038/s44320-024-00079-wRedesigning error control in cross-linking mass spectrometry enables more robust and sensitive protein-protein interaction studiesBoris Bogdanow0Max Ruwolt1Julia Ruta2Lars Mühlberg3Cong Wang4Wen-feng Zeng5Arne Elofsson6Fan Liu7Research group “Structural Interactomics”, Leibniz Forschungsinstitut für Molekulare PharmakologieResearch group “Structural Interactomics”, Leibniz Forschungsinstitut für Molekulare PharmakologieResearch group “Structural Interactomics”, Leibniz Forschungsinstitut für Molekulare PharmakologieResearch group “Structural Interactomics”, Leibniz Forschungsinstitut für Molekulare PharmakologieResearch group “Structural Interactomics”, Leibniz Forschungsinstitut für Molekulare PharmakologieDepartment of Proteomics and Signal Transduction, Max Planck Institute of BiochemistryStockholm Bioinformatics Center, Stockholm UniversityResearch group “Structural Interactomics”, Leibniz Forschungsinstitut für Molekulare PharmakologieAbstract Cross-linking mass spectrometry (XL-MS) allows characterizing protein-protein interactions (PPIs) in native biological systems by capturing cross-links between different proteins (inter-links). However, inter-link identification remains challenging, requiring dedicated data filtering schemes and thorough error control. Here, we benchmark existing data filtering schemes combined with error rate estimation strategies utilizing concatenated target-decoy protein sequence databases. These workflows show shortcomings either in sensitivity (many false negatives) or specificity (many false positives). To ameliorate the limited sensitivity without compromising specificity, we develop an alternative target-decoy search strategy using fused target-decoy databases. Furthermore, we devise a different data filtering scheme that takes the inter-link context of the XL-MS dataset into account. Combining both approaches maintains low error rates and minimizes false negatives, as we show by mathematical simulations, analysis of experimental ground-truth data, and application to various biological datasets. In human cells, inter-link identifications increase by 75% and we confirm their structural accuracy through proteome-wide comparisons to AlphaFold2-derived models. Taken together, target-decoy fusion and context-sensitive data filtering deepen and fine-tune XL-MS-based interactomics.https://doi.org/10.1038/s44320-024-00079-wCross-linking Mass SpectrometryFalse-Discovery RateProteomicsStructure ModelingError Control
spellingShingle Boris Bogdanow
Max Ruwolt
Julia Ruta
Lars Mühlberg
Cong Wang
Wen-feng Zeng
Arne Elofsson
Fan Liu
Redesigning error control in cross-linking mass spectrometry enables more robust and sensitive protein-protein interaction studies
Molecular Systems Biology
Cross-linking Mass Spectrometry
False-Discovery Rate
Proteomics
Structure Modeling
Error Control
title Redesigning error control in cross-linking mass spectrometry enables more robust and sensitive protein-protein interaction studies
title_full Redesigning error control in cross-linking mass spectrometry enables more robust and sensitive protein-protein interaction studies
title_fullStr Redesigning error control in cross-linking mass spectrometry enables more robust and sensitive protein-protein interaction studies
title_full_unstemmed Redesigning error control in cross-linking mass spectrometry enables more robust and sensitive protein-protein interaction studies
title_short Redesigning error control in cross-linking mass spectrometry enables more robust and sensitive protein-protein interaction studies
title_sort redesigning error control in cross linking mass spectrometry enables more robust and sensitive protein protein interaction studies
topic Cross-linking Mass Spectrometry
False-Discovery Rate
Proteomics
Structure Modeling
Error Control
url https://doi.org/10.1038/s44320-024-00079-w
work_keys_str_mv AT borisbogdanow redesigningerrorcontrolincrosslinkingmassspectrometryenablesmorerobustandsensitiveproteinproteininteractionstudies
AT maxruwolt redesigningerrorcontrolincrosslinkingmassspectrometryenablesmorerobustandsensitiveproteinproteininteractionstudies
AT juliaruta redesigningerrorcontrolincrosslinkingmassspectrometryenablesmorerobustandsensitiveproteinproteininteractionstudies
AT larsmuhlberg redesigningerrorcontrolincrosslinkingmassspectrometryenablesmorerobustandsensitiveproteinproteininteractionstudies
AT congwang redesigningerrorcontrolincrosslinkingmassspectrometryenablesmorerobustandsensitiveproteinproteininteractionstudies
AT wenfengzeng redesigningerrorcontrolincrosslinkingmassspectrometryenablesmorerobustandsensitiveproteinproteininteractionstudies
AT arneelofsson redesigningerrorcontrolincrosslinkingmassspectrometryenablesmorerobustandsensitiveproteinproteininteractionstudies
AT fanliu redesigningerrorcontrolincrosslinkingmassspectrometryenablesmorerobustandsensitiveproteinproteininteractionstudies