Cinnamic acid conjugated with triazole acetamides as anti-Alzheimer and anti-melanogenesis candidates: an in vitro and in silico study

Abstract In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including 1H-NMR, 13C-NMR, mass spectr...

Full description

Saved in:
Bibliographic Details
Main Authors: Amir Shervin Shokouhi Asl, Mohammad Hosein Sayahi, Mohammad Hashem Hashempur, Cambyz Irajie, Amir Hossein Alaeddini, Seyedeh Niloufar Ghafouri, Milad Noori, Navid Dastyafteh, Javad Mottaghipisheh, Mehdi Asadi, Bagher Larijani, Mohammad Mahdavi, Aida Iraji
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-024-83020-3
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including 1H-NMR, 13C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes. Among synthesize derivative compound 3-(4-((1-(2-((2,4-dichlorophenyl)amino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-methoxyphenyl)acrylic acid (10j) exhibited the highest activity against BChE with an IC50 value of 11.99 ± 0.53 µM. Derivative 3-(3-methoxy-4-((1-(2-oxo-2-(p-tolylamino)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)acrylic acid (10d), bearing a 4-CH3 group, was identified as the most potent AChE inhibitor. In terms of tyrosinase inhibition, 3-(3-methoxy-4-((1-(2-((2-methyl-4-nitrophenyl)amino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)acrylic acid (compound 10n), demonstrated 44.87% inhibition at a concentration of 40 µM. Additionally, a kinetic study of compound 10j which 2,4-dichlorophenyl substituents against BChE revealed a mixed-type inhibition pattern. Furthermore, molecular docking and molecular dynamic studies of compound 10j were conducted to thoroughly evaluate its mode of action within the BChE active site.
ISSN:2045-2322