Ga2O3 Solar-Blind Deep-Ultraviolet Photodetectors with a Suspended Structure for High Responsivity and High-Speed Applications

The wide-bandgap semiconductor material Ga2O3 exhibits great potential in solar-blind deep-ultraviolet (DUV) photodetection applications, including none-line-of-sight secure optical communication, fire warning, high-voltage electricity monitoring, and maritime fog dispersion navigation. However, Ga2...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoxi Li, Zhifan Wu, Yuan Fang, Shuqi Huang, Cizhe Fang, Yibo Wang, Xiangyu Zeng, Yingguo Yang, Yue Hao, Yan Liu, Genquan Han
Format: Article
Language:English
Published: American Association for the Advancement of Science (AAAS) 2024-01-01
Series:Research
Online Access:https://spj.science.org/doi/10.34133/research.0546
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The wide-bandgap semiconductor material Ga2O3 exhibits great potential in solar-blind deep-ultraviolet (DUV) photodetection applications, including none-line-of-sight secure optical communication, fire warning, high-voltage electricity monitoring, and maritime fog dispersion navigation. However, Ga2O3 photodetectors have traditionally faced challenges in achieving both high responsivity and fast response time, limiting their practical application. Herein, the Ga2O3 solar-blind DUV photodetectors with a suspended structure have been constructed for the first time. The photodetector exhibits a high responsivity of 1.51 × 1010 A/W, a sensitive detectivity of 6.01 × 1017 Jones, a large external quantum efficiency of 7.53 × 1012 %, and a fast rise time of 180 ms under 250-nm illumination. Notably, the photodetector achieves both high responsivity and fast response time simultaneously under ultra-weak power intensity excitation of 0.01 μW/cm2. This important improvement is attributed to the reduction of interface defects, improved carrier transport, efficient carrier separation, and enhanced light absorption enabled by the suspended structure. This work provides valuable insights for designing and optimizing high-performance Ga2O3 solar-blind photodetectors.
ISSN:2639-5274