Cascade Machine Learning Approach Applied to Short-Term Medium Horizon Demand Forecasting

This work proposes a cascade model incorporating Long–Short-Term Memory (LSTM) and Multi-Layer Perceptron (MLP), which offers a more reliable model to forecast short-term (hourly) and medium horizon (week) water demand. The MLP model integrates the previously forecasted demand with exogenous variabl...

Full description

Saved in:
Bibliographic Details
Main Authors: Bruno Brentan, Ariele Zanfei, Martin Oberascher, Robert Sitzenfrei, Joaquin Izquierdo, Andrea Menapace
Format: Article
Language:English
Published: MDPI AG 2024-09-01
Series:Engineering Proceedings
Subjects:
Online Access:https://www.mdpi.com/2673-4591/69/1/42
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work proposes a cascade model incorporating Long–Short-Term Memory (LSTM) and Multi-Layer Perceptron (MLP), which offers a more reliable model to forecast short-term (hourly) and medium horizon (week) water demand. The MLP model integrates the previously forecasted demand with exogenous variables, functioning as a filter to enhance the accuracy of the LSTM estimation. The LSTM model estimates, utilizing a univariate approach, the hourly forecasting of water demand for the entire available dataset and the minimum night flow. The algorithm considers various time series sizes for each DMA and predicts the water demand values for each hour throughout the week. Having forecasted all timesteps with the LSTM, a virtual online process can be implemented to enhance forecasting quality.
ISSN:2673-4591