Construction of a generalized Voronoi diagram with optimal placement of generator points based on the theory of optimal set partitioning
The problem of construction of a generalized Voronoi diagram with optimal placement of a finite number of generator points in a bounded set of \textit{n}-dimensional Euclidean space is considered. A method is proposed for solving such a problem based on the formulation of the corresponding continuou...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | deu |
| Published: |
Ivan Franko National University of Lviv
2020-03-01
|
| Series: | Математичні Студії |
| Subjects: | |
| Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/12 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The problem of construction of a generalized Voronoi diagram with optimal placement of a finite number of generator points in a bounded set of \textit{n}-dimensional Euclidean space is considered. A method is proposed for solving such a problem based on the formulation of the corresponding continuous problem of optimal partitioning of a set in \textit{n}-dimensional Euclidean space with a partition quality criterion that provides the corresponding form of the Voronoi diagram. Further, to solve such a problem, the developed mathematical and algorithmic apparatus is used, the part of which is Shor's \textit{r}-algorithm. |
|---|---|
| ISSN: | 1027-4634 2411-0620 |