Enhancing Biomarker Detection and Imaging Performance of Smartphone Fluorescence Microscopy Devices

Fluorescence microscopy enabled by smartphone-coupled 3D instruments has shown utility in different biomedical applications ranging from diagnostics to biomanufacturing. Recently, we have designed and developed these devices and have demonstrated their utility in micro-nano particle sensing and leuk...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad Ahsan Sami, Muhammad Nabeel Tahir, Umer Hassan
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Biosensors
Subjects:
Online Access:https://www.mdpi.com/2079-6374/15/7/403
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fluorescence microscopy enabled by smartphone-coupled 3D instruments has shown utility in different biomedical applications ranging from diagnostics to biomanufacturing. Recently, we have designed and developed these devices and have demonstrated their utility in micro-nano particle sensing and leukocyte imaging. Here, we present a novel application for enhancing the imaging performance of smartphone fluorescence microscopes (SFM) and reducing their operational complexity. Computational noise correction is employed using 3D Averaging and 3D Gaussian filters of different kernel sizes (3 × 3 × 3, 7 × 7 × 7, 11 × 11 × 11, 15 × 15 × 15, and 21 × 21 × 21) and various standard deviations σ (for Gaussian only). Fluorescent beads of different sizes (8.3, 2, 1, 0.8 µm) were imaged using a custom-designed SFM. The application of the computational filters significantly enhanced the signal quality of particle detection in the captured fluorescent images. Amongst the Averaging filters, a kernel size of 21 × 21 × 21 produced the best results for all bead sizes, and similarly, amongst Gaussian filters, σ equal to 5 and a kernel size equal to 21 × 21 × 21 produced the best results. This visual improvement was then quantified by calculating the signal-difference-to-noise ratio (SDNR) and contrast-to-noise ratio (CNR) of filtered and unfiltered original images using a custom-developed quality assessment algorithm (AQAFI). Lastly, noise correction using Averaging and Gaussian filters with the previously identified optimal parameters was applied to images of fluorescently tagged human peripheral blood leukocytes captured using an SFM under various conditions. The ubiquitous nature and simplistic application of these filters enable their utility with a range of existing fluorescence microscope designs, thus allowing us to enhance their imaging capabilities.
ISSN:2079-6374