Drop-on-demand 3D printing of programable magnetic composites for soft robotics

Soft robotics have become increasingly popular as a versatile alternative to traditional robotics. Magnetic composite materials, which respond to external magnetic fields, have attracted significant interest in this field due to their programmable two-way actuation and shape-morphing capabilities. A...

Full description

Saved in:
Bibliographic Details
Main Authors: Anil Bastola, Luke Parry, Robyn Worsley, Nisar Ahmed, Edward Lester, Richard Hague, Christopher Tuck
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Additive Manufacturing Letters
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2772369024000586
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soft robotics have become increasingly popular as a versatile alternative to traditional robotics. Magnetic composite materials, which respond to external magnetic fields, have attracted significant interest in this field due to their programmable two-way actuation and shape-morphing capabilities. Additive manufacturing (AM)/3D printing allows for the incorporation of different functional composite materials to create active components for soft robotics. However, current AM methods have limitations, especially when it comes to printing smart composite materials with high functional material content. This is a key requirement for enhancing responsiveness to external stimuli. Commonly used AM methods for smart magnetic composites, such as direct ink writing (DIW), confront challenges in achieving discontinuous printing, and enabling multi-material control at the voxel level, while some AM techniques are not suitable for producing composite materials. To address these limitations, we employed high-viscosity drop-on-demand (DoD) jetting and developed programmable magnetic composites filled with micron-sized hard magnetic particles. This method bridges the gap between conventional ink-jetting and DIW, which require printing inks with viscosities at opposite ends of the spectrum. This high-viscosity DoD jetting enables continuous, discontinuous, and non-contact printing, making it a versatile and effective method for 3D printing functional magnetic composites even with micron-sized fillers. Furthermore, we demonstrated stable magnetic domain programming and two-way shape-morphing actuations of printed structures for soft robotics. In summary, our work highlights high-viscosity DoD jetting as a promising method for printing functional magnetic composites and other similar materials for a wide range of applications.
ISSN:2772-3690