Random Search Walks Inside Absorbing Annuli

We revisit the problem of random search walks in the two-dimensional (2D) space between concentric absorbing annuli, in which a searcher performs random steps until finding either the inner or the outer ring. By considering step lengths drawn from a power-law distribution, we obtain the exact analyt...

Full description

Saved in:
Bibliographic Details
Main Authors: Anderson S. Bibiano-Filho, Jandson F. O. de Freitas, Marcos G. E. da Luz, Gandhimohan M. Viswanathan, Ernesto P. Raposo
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/7/758
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849246592711786496
author Anderson S. Bibiano-Filho
Jandson F. O. de Freitas
Marcos G. E. da Luz
Gandhimohan M. Viswanathan
Ernesto P. Raposo
author_facet Anderson S. Bibiano-Filho
Jandson F. O. de Freitas
Marcos G. E. da Luz
Gandhimohan M. Viswanathan
Ernesto P. Raposo
author_sort Anderson S. Bibiano-Filho
collection DOAJ
description We revisit the problem of random search walks in the two-dimensional (2D) space between concentric absorbing annuli, in which a searcher performs random steps until finding either the inner or the outer ring. By considering step lengths drawn from a power-law distribution, we obtain the exact analytical result for the search efficiency <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> in the ballistic limit, as well as an approximate expression for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> in the regime of searches starting far away from both rings, and the scaling behavior of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> for very small initial distances to the inner ring. Our numerical results show good overall agreement with the theoretical findings. We also analyze numerically the absorbing probabilities related to the encounter of the inner and outer rings and the associated Shannon entropy. The power-law exponent marking the crossing of such probabilities (equiprobability) and the maximum entropy condition grows logarithmically with the starting distance. Random search walks inside absorbing annuli are relevant, since they represent a mean-field approach to conventional random searches in 2D, which is still an open problem with important applications in various fields.
format Article
id doaj-art-d6b3edf16bc44fbbbe917dba627f806b
institution Kabale University
issn 1099-4300
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj-art-d6b3edf16bc44fbbbe917dba627f806b2025-08-20T03:58:26ZengMDPI AGEntropy1099-43002025-07-0127775810.3390/e27070758Random Search Walks Inside Absorbing AnnuliAnderson S. Bibiano-Filho0Jandson F. O. de Freitas1Marcos G. E. da Luz2Gandhimohan M. Viswanathan3Ernesto P. Raposo4Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE, BrazilDepartamento de Física, Universidade Federal de Viçosa, Viçosa 36570-900, MG, BrazilDepartamento de Física, Universidade Federal do Paraná, Curitiba 81531-980, PR, BrazilDepartment of Physics and National Institute of Science and Technology of Complex Systems, Federal University of Rio Grande do Norte, Natal 59078-970, RN, BrazilLaboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE, BrazilWe revisit the problem of random search walks in the two-dimensional (2D) space between concentric absorbing annuli, in which a searcher performs random steps until finding either the inner or the outer ring. By considering step lengths drawn from a power-law distribution, we obtain the exact analytical result for the search efficiency <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> in the ballistic limit, as well as an approximate expression for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> in the regime of searches starting far away from both rings, and the scaling behavior of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> for very small initial distances to the inner ring. Our numerical results show good overall agreement with the theoretical findings. We also analyze numerically the absorbing probabilities related to the encounter of the inner and outer rings and the associated Shannon entropy. The power-law exponent marking the crossing of such probabilities (equiprobability) and the maximum entropy condition grows logarithmically with the starting distance. Random search walks inside absorbing annuli are relevant, since they represent a mean-field approach to conventional random searches in 2D, which is still an open problem with important applications in various fields.https://www.mdpi.com/1099-4300/27/7/758random searchLévy walksphysics of foraging
spellingShingle Anderson S. Bibiano-Filho
Jandson F. O. de Freitas
Marcos G. E. da Luz
Gandhimohan M. Viswanathan
Ernesto P. Raposo
Random Search Walks Inside Absorbing Annuli
Entropy
random search
Lévy walks
physics of foraging
title Random Search Walks Inside Absorbing Annuli
title_full Random Search Walks Inside Absorbing Annuli
title_fullStr Random Search Walks Inside Absorbing Annuli
title_full_unstemmed Random Search Walks Inside Absorbing Annuli
title_short Random Search Walks Inside Absorbing Annuli
title_sort random search walks inside absorbing annuli
topic random search
Lévy walks
physics of foraging
url https://www.mdpi.com/1099-4300/27/7/758
work_keys_str_mv AT andersonsbibianofilho randomsearchwalksinsideabsorbingannuli
AT jandsonfodefreitas randomsearchwalksinsideabsorbingannuli
AT marcosgedaluz randomsearchwalksinsideabsorbingannuli
AT gandhimohanmviswanathan randomsearchwalksinsideabsorbingannuli
AT ernestopraposo randomsearchwalksinsideabsorbingannuli