Fusion of discourse structural position encoding for neural machine translation

Most of existing document-level neural machine translation (DocNMT) methods focus on exploring the utilization of the lexical information of context,which ignore the structural relationships among the cross-sentence discourse semantic units.Therefore,multiple discourse structural position encoding s...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaomian KANG, Chengqing ZONG
Format: Article
Language:zho
Published: POSTS&TELECOM PRESS Co., LTD 2020-06-01
Series:智能科学与技术学报
Subjects:
Online Access:http://www.cjist.com.cn/thesisDetails#10.11959/j.issn.2096-6652.202016
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846171148996313088
author Xiaomian KANG
Chengqing ZONG
author_facet Xiaomian KANG
Chengqing ZONG
author_sort Xiaomian KANG
collection DOAJ
description Most of existing document-level neural machine translation (DocNMT) methods focus on exploring the utilization of the lexical information of context,which ignore the structural relationships among the cross-sentence discourse semantic units.Therefore,multiple discourse structural position encoding strategies were proposed to represent the positional relationships among the words in discourse units over the discourse tree based on rhetorical structure theory (RST).Experimental results show that the source-side discourse structural position information is effectively fused into the DocNMT models underlying the Transformer architecture by the position encoding,and the translation quality is improved significantly.
format Article
id doaj-art-d66f0f0d436b4901a4f2f450d85b977b
institution Kabale University
issn 2096-6652
language zho
publishDate 2020-06-01
publisher POSTS&TELECOM PRESS Co., LTD
record_format Article
series 智能科学与技术学报
spelling doaj-art-d66f0f0d436b4901a4f2f450d85b977b2024-11-11T06:51:54ZzhoPOSTS&TELECOM PRESS Co., LTD智能科学与技术学报2096-66522020-06-01214415259637757Fusion of discourse structural position encoding for neural machine translationXiaomian KANGChengqing ZONGMost of existing document-level neural machine translation (DocNMT) methods focus on exploring the utilization of the lexical information of context,which ignore the structural relationships among the cross-sentence discourse semantic units.Therefore,multiple discourse structural position encoding strategies were proposed to represent the positional relationships among the words in discourse units over the discourse tree based on rhetorical structure theory (RST).Experimental results show that the source-side discourse structural position information is effectively fused into the DocNMT models underlying the Transformer architecture by the position encoding,and the translation quality is improved significantly.http://www.cjist.com.cn/thesisDetails#10.11959/j.issn.2096-6652.202016neural machine translation;discourse structure;position encoding;discourse analysis;rhetorical structure theory
spellingShingle Xiaomian KANG
Chengqing ZONG
Fusion of discourse structural position encoding for neural machine translation
智能科学与技术学报
neural machine translation;discourse structure;position encoding;discourse analysis;rhetorical structure theory
title Fusion of discourse structural position encoding for neural machine translation
title_full Fusion of discourse structural position encoding for neural machine translation
title_fullStr Fusion of discourse structural position encoding for neural machine translation
title_full_unstemmed Fusion of discourse structural position encoding for neural machine translation
title_short Fusion of discourse structural position encoding for neural machine translation
title_sort fusion of discourse structural position encoding for neural machine translation
topic neural machine translation;discourse structure;position encoding;discourse analysis;rhetorical structure theory
url http://www.cjist.com.cn/thesisDetails#10.11959/j.issn.2096-6652.202016
work_keys_str_mv AT xiaomiankang fusionofdiscoursestructuralpositionencodingforneuralmachinetranslation
AT chengqingzong fusionofdiscoursestructuralpositionencodingforneuralmachinetranslation