Torque ripple reduction and increasing of torque per volume for hybrid electrical vehicle

Hybrid electrical vehicles (HEV) should be designed somehow torque is smooth. Because torque ripple not only reduces control precision but also increases elements vibration that causes acoustic noise, mechanical instability and early aging parts. Furthermore, torque per volume should be maximized an...

Full description

Saved in:
Bibliographic Details
Main Author: A. Hosseinpour
Format: Article
Language:English
Published: Elsevier 2024-10-01
Series:Energy Conversion and Management: X
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590174524002368
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hybrid electrical vehicles (HEV) should be designed somehow torque is smooth. Because torque ripple not only reduces control precision but also increases elements vibration that causes acoustic noise, mechanical instability and early aging parts. Furthermore, torque per volume should be maximized and heat removal should be accomplished without torque weakening. It is proposed the volume and internal dimensions are determined due to the thermal considerations and maximize torque per volume. The mentioned application is neglected heat removal so volume is constant. Therefore, HEV is manufactured by two objective functions: either minimum fluctuations or maximum average torque. In this paper series hybrid excitation synchronous machine (SHESM) is utilized as HEV. Two-objective optimization problems are solved by MOEA/D, NSGA II, PESA II and SPEA II algorithms based on a two-dimensional (2-D) model. The performance indices of optimal structure are evaluated by 2-D and confirmed by numerical method.
ISSN:2590-1745