A Data Imputation Approach for Missing Power Consumption Measurements in Water-Cooled Centrifugal Chillers
In the process of collecting operational data for the performance analysis of water-cooled centrifugal chillers, missing values are inevitable due to various factors such as sensor errors, data transmission failures, and failure of the measurement system. When a substantial amount of missing data is...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/11/2779 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849330904150835200 |
|---|---|
| author | Sung Won Kim Young Il Kim |
| author_facet | Sung Won Kim Young Il Kim |
| author_sort | Sung Won Kim |
| collection | DOAJ |
| description | In the process of collecting operational data for the performance analysis of water-cooled centrifugal chillers, missing values are inevitable due to various factors such as sensor errors, data transmission failures, and failure of the measurement system. When a substantial amount of missing data is present, the reliability of data analysis decreases, leading to potential distortions in the results. To address this issue, it is necessary to either minimize missing occurrences by utilizing high-precision measurement equipment or apply reliable imputation techniques to compensate for missing values. This study focuses on two water-cooled turbo chillers installed in Tower A, Seoul, collecting a total of 118,464 data points over 3 years and 4 months. The dataset includes chilled water inlet and outlet temperatures (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula>) and flow rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula>) and cooling water inlet and outlet temperatures (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula>) and flow rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow><mrow><mn>3</mn></mrow></msub></mrow></semantics></math></inline-formula>), as well as chiller power consumption (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>W</mi></mrow><mo>˙</mo></mover></mrow><mrow><mi>c</mi></mrow></msub></mrow></semantics></math></inline-formula>). To evaluate the performance of various imputation techniques, we introduced missing values at a rate of 10–30% under the assumption of a missing-at-random (MAR) mechanism. Seven different imputation methods—mean, median, linear interpolation, multiple imputation, simple random imputation, k-nearest neighbors (KNN), and the dynamically clustered KNN (DC-KNN)—were applied, and their imputation performance was validated using MAPE and CVRMSE metrics. The DC-KNN method, developed in this study, improves upon conventional KNN imputation by integrating clustering and dynamic weighting mechanisms. The results indicate that DC-KNN achieved the highest predictive performance, with MAPE ranging from 9.74% to 10.30% and CVRMSE ranging from 12.19% to 13.43%. Finally, for the missing data recorded in July 2023, we applied the most effective DC-KNN method to generate imputed values that reflect the characteristics of the studied site, which employs an ice thermal energy storage system. |
| format | Article |
| id | doaj-art-d4fd077c4ba042f4aec2a0aeb1f0fd46 |
| institution | Kabale University |
| issn | 1996-1073 |
| language | English |
| publishDate | 2025-05-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Energies |
| spelling | doaj-art-d4fd077c4ba042f4aec2a0aeb1f0fd462025-08-20T03:46:46ZengMDPI AGEnergies1996-10732025-05-011811277910.3390/en18112779A Data Imputation Approach for Missing Power Consumption Measurements in Water-Cooled Centrifugal ChillersSung Won Kim0Young Il Kim1Department of Architectural Engineering, Graduate School, Seoul National University of Science & Technology, Seoul 01811, Republic of KoreaSchool of Architectural, Seoul National University of Science & Technology, Seoul 01811, Republic of KoreaIn the process of collecting operational data for the performance analysis of water-cooled centrifugal chillers, missing values are inevitable due to various factors such as sensor errors, data transmission failures, and failure of the measurement system. When a substantial amount of missing data is present, the reliability of data analysis decreases, leading to potential distortions in the results. To address this issue, it is necessary to either minimize missing occurrences by utilizing high-precision measurement equipment or apply reliable imputation techniques to compensate for missing values. This study focuses on two water-cooled turbo chillers installed in Tower A, Seoul, collecting a total of 118,464 data points over 3 years and 4 months. The dataset includes chilled water inlet and outlet temperatures (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula>) and flow rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula>) and cooling water inlet and outlet temperatures (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula>) and flow rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow><mrow><mn>3</mn></mrow></msub></mrow></semantics></math></inline-formula>), as well as chiller power consumption (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>W</mi></mrow><mo>˙</mo></mover></mrow><mrow><mi>c</mi></mrow></msub></mrow></semantics></math></inline-formula>). To evaluate the performance of various imputation techniques, we introduced missing values at a rate of 10–30% under the assumption of a missing-at-random (MAR) mechanism. Seven different imputation methods—mean, median, linear interpolation, multiple imputation, simple random imputation, k-nearest neighbors (KNN), and the dynamically clustered KNN (DC-KNN)—were applied, and their imputation performance was validated using MAPE and CVRMSE metrics. The DC-KNN method, developed in this study, improves upon conventional KNN imputation by integrating clustering and dynamic weighting mechanisms. The results indicate that DC-KNN achieved the highest predictive performance, with MAPE ranging from 9.74% to 10.30% and CVRMSE ranging from 12.19% to 13.43%. Finally, for the missing data recorded in July 2023, we applied the most effective DC-KNN method to generate imputed values that reflect the characteristics of the studied site, which employs an ice thermal energy storage system.https://www.mdpi.com/1996-1073/18/11/2779centrifugal chillerCVRSMEdata imputationDC-KNNMAPEperformance analysis |
| spellingShingle | Sung Won Kim Young Il Kim A Data Imputation Approach for Missing Power Consumption Measurements in Water-Cooled Centrifugal Chillers Energies centrifugal chiller CVRSME data imputation DC-KNN MAPE performance analysis |
| title | A Data Imputation Approach for Missing Power Consumption Measurements in Water-Cooled Centrifugal Chillers |
| title_full | A Data Imputation Approach for Missing Power Consumption Measurements in Water-Cooled Centrifugal Chillers |
| title_fullStr | A Data Imputation Approach for Missing Power Consumption Measurements in Water-Cooled Centrifugal Chillers |
| title_full_unstemmed | A Data Imputation Approach for Missing Power Consumption Measurements in Water-Cooled Centrifugal Chillers |
| title_short | A Data Imputation Approach for Missing Power Consumption Measurements in Water-Cooled Centrifugal Chillers |
| title_sort | data imputation approach for missing power consumption measurements in water cooled centrifugal chillers |
| topic | centrifugal chiller CVRSME data imputation DC-KNN MAPE performance analysis |
| url | https://www.mdpi.com/1996-1073/18/11/2779 |
| work_keys_str_mv | AT sungwonkim adataimputationapproachformissingpowerconsumptionmeasurementsinwatercooledcentrifugalchillers AT youngilkim adataimputationapproachformissingpowerconsumptionmeasurementsinwatercooledcentrifugalchillers AT sungwonkim dataimputationapproachformissingpowerconsumptionmeasurementsinwatercooledcentrifugalchillers AT youngilkim dataimputationapproachformissingpowerconsumptionmeasurementsinwatercooledcentrifugalchillers |