Large language model powered knowledge graph construction for mental health exploration
Abstract Mental health is a major global concern, yet findings remain fragmented across studies and databases, hindering integrative understanding and clinical translation. To address this gap, we present the Mental Disorders Knowledge Graph (MDKG)—a large-scale, contextualized knowledge graph built...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-08-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-62781-z |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Mental health is a major global concern, yet findings remain fragmented across studies and databases, hindering integrative understanding and clinical translation. To address this gap, we present the Mental Disorders Knowledge Graph (MDKG)—a large-scale, contextualized knowledge graph built using large language models to unify evidence from biomedical literature and curated databases. MDKG comprises over 10 million relations, including nearly 1 million novel associations absent from existing resources. By structurally encoding contextual features such as conditionality, demographic factors, and co-occurring clinical attributes, the graph enables more nuanced interpretation and rapid expert validation, reducing evaluation time by up to 70%. Applied to predictive modeling in the UK Biobank, MDKG-enhanced representations yielded significant gains in predictive performance across multiple mental disorders. As a scalable and semantically enriched resource, MDKG offers a powerful foundation for accelerating psychiatric research and enabling interpretable, data-driven clinical insights. |
|---|---|
| ISSN: | 2041-1723 |