A New Insight into the Electronic Structure Property Relationships in Glassy Ti-Zr-Nb-(Cu,Ni,Co) Alloys
In this work we revisit a vast amount of existing data on physical properties of Ti-Zr-Nb-(Cu,Ni,Co) glassy alloys over a broad range of concentrations (from the high-entropy range to that of conventional Cu-, Ni- or Co-rich alloys). By using our new approach based on the total content of late trans...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Metals |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-4701/15/7/719 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this work we revisit a vast amount of existing data on physical properties of Ti-Zr-Nb-(Cu,Ni,Co) glassy alloys over a broad range of concentrations (from the high-entropy range to that of conventional Cu-, Ni- or Co-rich alloys). By using our new approach based on the total content of late transition metal(s), we derive a number of physical parameters of a hypothetical amorphous TiZrNb alloy: lattice parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>=</mo><mo>(</mo><mn>3.42</mn><mo>±</mo><mn>0.02</mn><mo>)</mo></mrow></semantics></math></inline-formula> Å, Sommerfeld coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><mo>=</mo><mn>6.2</mn><mspace width="0.166667em"></mspace><mi>mJ/mol</mi><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="normal">K</mi><mn>2</mn></msup></semantics></math></inline-formula>, density of states at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mrow><mo>(</mo><msub><mi>E</mi><mi>F</mi></msub><mo>)</mo></mrow><mo>=</mo><mn>2.6</mn><mspace width="0.166667em"></mspace><msup><mrow><mo>(</mo><mi>at</mi><mspace width="4.pt"></mspace><mi>eV</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, magnetic susceptibility <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>2.00</mn><mo>±</mo><mn>0.05</mn><mo>)</mo><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula>mJ/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="normal">T</mi><mn>2</mn></msup><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula>mol, superconducting transition temperature <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>c</mi></msub><mo>=</mo><mrow><mo>(</mo><mn>8</mn><mo>±</mo><mn>1</mn><mo>)</mo></mrow><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula>K, upper critical field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">μ</mi><mn>0</mn></msub><msub><mi>H</mi><mrow><mi>c</mi><mn>2</mn></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mn>20</mn><mo>±</mo><mn>5</mn><mo>)</mo></mrow><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula>T, and coherence length <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ξ</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mo>(</mo><mn>40</mn><mo>±</mo><mn>3</mn><mo>)</mo><mspace width="0.166667em"></mspace></mrow></semantics></math></inline-formula>Å. We show that our extrapolated results for the amorphous TiZrNb alloy would be similar to that of crystalline TiZrNb, except for superconducting properties (most notably the upper critical field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mi>c</mi><mn>2</mn></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>), which might be attributed to the strong topological disorder of the amorphous phase. Also, we offer an explanation of the discrepancy between the variations in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>c</mi></msub></semantics></math></inline-formula> with the average number of valency electrons in neighboring alloys of 4d transition metals and some high-entropy alloys. Overall, we find that our novel method of systematic analysis of results is rather general, as it can provide reliable estimates of the properties of any alloy which has not been prepared as yet. |
|---|---|
| ISSN: | 2075-4701 |