Interpretable Evaluation of Sparse Time–Frequency Distributions: 2D Metric Based on Instantaneous Frequency and Group Delay Analysis

Compressive sensing in the ambiguity domain offers an efficient method for reconstructing high-quality time–frequency distributions (TFDs) across diverse signals. However, evaluating the quality of these reconstructions presents a significant challenge due to the potential loss of auto-terms when a...

Full description

Saved in:
Bibliographic Details
Main Author: Vedran Jurdana
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/6/898
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Compressive sensing in the ambiguity domain offers an efficient method for reconstructing high-quality time–frequency distributions (TFDs) across diverse signals. However, evaluating the quality of these reconstructions presents a significant challenge due to the potential loss of auto-terms when a regularization parameter is inappropriate. Traditional global metrics have inherent limitations, while the state-of-the-art local Rényi entropy (LRE) metric provides a single-value assessment but lacks interpretability and positional information of auto-terms. This paper introduces a novel performance criterion that leverages instantaneous frequency and group delay estimations directly in the 2D time–frequency plane, offering a more nuanced evaluation by individually assessing the preservation of auto-terms, resolution quality, and interference suppression in TFDs. Experimental results on noisy synthetic and real-world gravitational signals demonstrate the effectiveness of this measure in assessing reconstructed TFDs, with a focus on auto-term preservation. The proposed metric offers advantages in interpretability and memory efficiency, while its application to meta-heuristic optimization yields high-performing reconstructed TFDs significantly quicker than the existing LRE-based metric. These benefits highlight its usability in advanced methods and machine-related applications.
ISSN:2227-7390