Enhancing Trench Stability: A Geogrid Reinforcement Approach
This paper investigates trench stabilization using geogrid reinforcement, employing static analysis via the finite element numerical method through PLAXIS 2D. Focusing on the challenges associated with soil instability in construction projects, particularly earthen roofs and rocky formations, this s...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-05-01
|
| Series: | Proceedings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2504-3900/105/1/114 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849340625771560960 |
|---|---|
| author | Sonia Rostami Ramin Vafaei Poursorkhabi Alireza Naseri |
| author_facet | Sonia Rostami Ramin Vafaei Poursorkhabi Alireza Naseri |
| author_sort | Sonia Rostami |
| collection | DOAJ |
| description | This paper investigates trench stabilization using geogrid reinforcement, employing static analysis via the finite element numerical method through PLAXIS 2D. Focusing on the challenges associated with soil instability in construction projects, particularly earthen roofs and rocky formations, this study emphasizes the potential for structural compromise and fragmentation due to erosion and weathering. Geogrid polymer networks, strategically integrated with soil and stone, emerge as a preventive measure against such disasters. Notable advancements in geogrid-related research are surveyed, establishing the context for this study. The methodology encompasses a simulated trench environment, systematically reinforced with a geogrid in 10 layers, within an 8 × 35-m earthen area. The properties of soil materials and geogrid specifications are detailed, while standard boundary conditions emulate real-world scenarios. Fine meshing ensures result accuracy, and trench width reduction analysis reveals a crucial correlation between diminished dimensions, augmented displacement, and a decreased safety factor. The results highlight a heightened instability within the trench as it undergoes dimensional changes. The decrease in trench length directly correlates with a reduction in the safety factor, underscoring the risk of compromised structural integrity. Reducing the length of the trench from 15 m to 14 m is associated with an approximate 1% increase in displacement, concurrently accompanied by a 9% decrease in volume. This insight emphasizes the need for meticulous trench dimension considerations in construction practices. The findings contribute to the geotechnical engineering field, prompting a re-evaluation of design methodologies and offering empirical evidence for the development of robust guidelines in trenching projects. |
| format | Article |
| id | doaj-art-d2f4e34f11c945b28e605fff4a8c57b2 |
| institution | Kabale University |
| issn | 2504-3900 |
| language | English |
| publishDate | 2024-05-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Proceedings |
| spelling | doaj-art-d2f4e34f11c945b28e605fff4a8c57b22025-08-20T03:43:51ZengMDPI AGProceedings2504-39002024-05-01105111410.3390/proceedings2024105114Enhancing Trench Stability: A Geogrid Reinforcement ApproachSonia Rostami0Ramin Vafaei Poursorkhabi1Alireza Naseri2Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz 5157944533, IranDepartment of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz 5157944533, IranDepartment of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz 5157944533, IranThis paper investigates trench stabilization using geogrid reinforcement, employing static analysis via the finite element numerical method through PLAXIS 2D. Focusing on the challenges associated with soil instability in construction projects, particularly earthen roofs and rocky formations, this study emphasizes the potential for structural compromise and fragmentation due to erosion and weathering. Geogrid polymer networks, strategically integrated with soil and stone, emerge as a preventive measure against such disasters. Notable advancements in geogrid-related research are surveyed, establishing the context for this study. The methodology encompasses a simulated trench environment, systematically reinforced with a geogrid in 10 layers, within an 8 × 35-m earthen area. The properties of soil materials and geogrid specifications are detailed, while standard boundary conditions emulate real-world scenarios. Fine meshing ensures result accuracy, and trench width reduction analysis reveals a crucial correlation between diminished dimensions, augmented displacement, and a decreased safety factor. The results highlight a heightened instability within the trench as it undergoes dimensional changes. The decrease in trench length directly correlates with a reduction in the safety factor, underscoring the risk of compromised structural integrity. Reducing the length of the trench from 15 m to 14 m is associated with an approximate 1% increase in displacement, concurrently accompanied by a 9% decrease in volume. This insight emphasizes the need for meticulous trench dimension considerations in construction practices. The findings contribute to the geotechnical engineering field, prompting a re-evaluation of design methodologies and offering empirical evidence for the development of robust guidelines in trenching projects.https://www.mdpi.com/2504-3900/105/1/114trench stabilizationgeogrid reinforcementfinite element numerical analysissoil stability |
| spellingShingle | Sonia Rostami Ramin Vafaei Poursorkhabi Alireza Naseri Enhancing Trench Stability: A Geogrid Reinforcement Approach Proceedings trench stabilization geogrid reinforcement finite element numerical analysis soil stability |
| title | Enhancing Trench Stability: A Geogrid Reinforcement Approach |
| title_full | Enhancing Trench Stability: A Geogrid Reinforcement Approach |
| title_fullStr | Enhancing Trench Stability: A Geogrid Reinforcement Approach |
| title_full_unstemmed | Enhancing Trench Stability: A Geogrid Reinforcement Approach |
| title_short | Enhancing Trench Stability: A Geogrid Reinforcement Approach |
| title_sort | enhancing trench stability a geogrid reinforcement approach |
| topic | trench stabilization geogrid reinforcement finite element numerical analysis soil stability |
| url | https://www.mdpi.com/2504-3900/105/1/114 |
| work_keys_str_mv | AT soniarostami enhancingtrenchstabilityageogridreinforcementapproach AT raminvafaeipoursorkhabi enhancingtrenchstabilityageogridreinforcementapproach AT alirezanaseri enhancingtrenchstabilityageogridreinforcementapproach |