A Cloud Computing Framework for Space Farming Data Analysis

This study presents a system framework by which cloud resources are utilized to analyze crop germination status in a 2U CubeSat. This research aims to address the onboard computing constraints in nanosatellite missions to boost space agricultural practices. Through the Espressif Simple Protocol for...

Full description

Saved in:
Bibliographic Details
Main Authors: Adrian Genevie Janairo, Ronnie Concepcion, Marielet Guillermo, Arvin Fernando
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:AgriEngineering
Subjects:
Online Access:https://www.mdpi.com/2624-7402/7/5/149
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents a system framework by which cloud resources are utilized to analyze crop germination status in a 2U CubeSat. This research aims to address the onboard computing constraints in nanosatellite missions to boost space agricultural practices. Through the Espressif Simple Protocol for Network-on-Wireless (ESP-NOW) technology, communication between ESP-32 modules were established. The corresponding sensor readings and image data were securely streamed through Amazon Web Service Internet of Things (AWS IoT) to an ESP-NOW receiver and Roboflow. Real-time plant growth predictor monitoring was implemented through the web application provisioned at the receiver end. On the other hand, sprouts on germination bed were determined through the custom-trained Roboflow computer vision model. The feasibility of remote data computational analysis and monitoring for a 2U CubeSat, given its minute form factor, was successfully demonstrated through the proposed cloud framework. The germination detection model resulted in a mean average precision (mAP), precision, and recall of 99.5%, 99.9%, and 100.0%, respectively. The temperature, humidity, heat index, LED and Fogger states, and bed sprouts data were shown in real time through a web dashboard. With this use case, immediate actions can be performed accordingly when abnormalities occur. The scalability nature of the framework allows adaptation to various crops to support sustainable agricultural activities in extreme environments such as space farming.
ISSN:2624-7402