Enhancing Neuroplasticity for Post-Stroke Motor Recovery: Mechanisms, Models, and Neurotechnology

Stroke remains a significant global health challenge, imposing substantial socioeconomic burdens. Post-stroke neurorehabilitation aims to maximize functional recovery and mitigate persistent disability through effective neuromodulation, while many patients experience prolonged recovery periods with...

Full description

Saved in:
Bibliographic Details
Main Authors: Wangwang Yan, Yuzhou Lin, Yi-Feng Chen, Yuling Wang, Jingxin Wang, Mingming Zhang
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Transactions on Neural Systems and Rehabilitation Engineering
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10929703/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stroke remains a significant global health challenge, imposing substantial socioeconomic burdens. Post-stroke neurorehabilitation aims to maximize functional recovery and mitigate persistent disability through effective neuromodulation, while many patients experience prolonged recovery periods with suboptimal outcomes. This review explores innovative neurotechnologies and therapeutic strategies enhancing neuroplasticity for post-stroke motor recovery, with a particular focus on the subacute and chronic phases. We examine key neuroplasticity mechanisms and rehabilitation models informing neurotechnology use, including the vicariation model, the interhemispheric competition model, and the bimodal balance-recovery model. Building on these theoretical foundations, current neurotechnologies are categorized into endogenous drivers of neuroplasticity (e.g., task-oriented training, brain-computer interfaces) and exogenous drivers (e.g., brain stimulation, muscular electrical stimulation, robot-assisted passive movement). However, most approaches lack tailored adjustments combining volitional behavior with brain neuromodulation. Given the heterogeneous effects of current neurotechnologies, we propose that future directions should focus on personalized rehabilitation strategies and closed-loop neuromodulation. These advanced approaches may provide deeper insights into neuroplasticity and potentially expand recovery possibilities for stroke patients.
ISSN:1534-4320
1558-0210