On-chain zero-knowledge machine learning: An overview and comparison
Zero-knowledge proofs introduce a mechanism to prove that certain computations were performed without revealing any underlying information and are used commonly in blockchain-based decentralized apps (dapps). This cryptographic technique addresses trust issues prevalent in blockchain applications, a...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2024-11-01
|
Series: | Journal of King Saud University: Computer and Information Sciences |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1319157824002969 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Zero-knowledge proofs introduce a mechanism to prove that certain computations were performed without revealing any underlying information and are used commonly in blockchain-based decentralized apps (dapps). This cryptographic technique addresses trust issues prevalent in blockchain applications, and has now been adapted for machine learning (ML) services, known as Zero-Knowledge Machine Learning (ZKML). By leveraging the distributed nature of blockchains, this approach enhances the trustworthiness of ML deployments, and opens up new possibilities for privacy-preserving and robust ML applications within dapps. This paper provides a comprehensive overview of the ZKML process and its critical components for verifying ML services on-chain. Furthermore, this paper explores how blockchain technology and smart contracts can offer verifiable, trustless proof that a specific ML model has been used correctly to perform inference, all without relying on a single trusted entity. Additionally, the paper compares and reviews existing frameworks for implementing ZKML in dapps, serving as a reference point for researchers interested in this emerging field. |
---|---|
ISSN: | 1319-1578 |