Simulating Organic Thin Film Transistors Using Multilayer Perceptron Regression Models to Enable Circuit Design

Abstract There is increasing interest in using specialized circuits based on emerging technologies to develop a new generation of smart devices. The process and device variability exhibited by such materials, however, can present substantial challenges for designing circuits. Three models are consid...

Full description

Saved in:
Bibliographic Details
Main Authors: Laurie E. Calvet, Sami El‐Nakouzi, Zonglong Li, Yerin Kim, Amer Zaibi, Patryk Golec, Ie Mei Bhattacharyya, Yvan Bonnassieux, Lina Kadura, Benjamin Iñiguez
Format: Article
Language:English
Published: Wiley-VCH 2024-12-01
Series:Advanced Electronic Materials
Subjects:
Online Access:https://doi.org/10.1002/aelm.202400515
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841553183551258624
author Laurie E. Calvet
Sami El‐Nakouzi
Zonglong Li
Yerin Kim
Amer Zaibi
Patryk Golec
Ie Mei Bhattacharyya
Yvan Bonnassieux
Lina Kadura
Benjamin Iñiguez
author_facet Laurie E. Calvet
Sami El‐Nakouzi
Zonglong Li
Yerin Kim
Amer Zaibi
Patryk Golec
Ie Mei Bhattacharyya
Yvan Bonnassieux
Lina Kadura
Benjamin Iñiguez
author_sort Laurie E. Calvet
collection DOAJ
description Abstract There is increasing interest in using specialized circuits based on emerging technologies to develop a new generation of smart devices. The process and device variability exhibited by such materials, however, can present substantial challenges for designing circuits. Three models are considered here: a physical compact model, an empirical look‐up table, and an empirical surrogate model based on a multilayer perceptron (MLP) regression. Each one is fit to measurements of discrete organic thin film transistors in the low voltage regime. It is shown that the models provide consistent results when designing artificial neuron circuits, but that the MLP regression provides the highest accuracy and is much simpler to fit compared to the compact model. The targeted technology exhibits non‐ideal behavior such as variable threshold voltage and hysteresis. Using the MLP regression model, the effect of such variability on the performance of an artificial neuron circuit is compared. It is found that these effects alter the neuron firing rate and change the time spent in the on/off states but do not change the basic operation.
format Article
id doaj-art-d241e365557f4c71a5d786d78854b2e7
institution Kabale University
issn 2199-160X
language English
publishDate 2024-12-01
publisher Wiley-VCH
record_format Article
series Advanced Electronic Materials
spelling doaj-art-d241e365557f4c71a5d786d78854b2e72025-01-09T11:51:13ZengWiley-VCHAdvanced Electronic Materials2199-160X2024-12-011012n/an/a10.1002/aelm.202400515Simulating Organic Thin Film Transistors Using Multilayer Perceptron Regression Models to Enable Circuit DesignLaurie E. Calvet0Sami El‐Nakouzi1Zonglong Li2Yerin Kim3Amer Zaibi4Patryk Golec5Ie Mei Bhattacharyya6Yvan Bonnassieux7Lina Kadura8Benjamin Iñiguez9LPICM CNRS, Ecole Polytechnique, Institute Polytechnique de Paris Palaiseau 91128 FranceLPICM CNRS, Ecole Polytechnique, Institute Polytechnique de Paris Palaiseau 91128 FranceLPICM CNRS, Ecole Polytechnique, Institute Polytechnique de Paris Palaiseau 91128 FranceLPICM CNRS, Ecole Polytechnique, Institute Polytechnique de Paris Palaiseau 91128 FranceDEERA University Rovira i Virgili Tarragona 43007 SpainAdvanced Technology Institute School of Computer Science and Electronic Engineering University of Surrey Guildford GU2 7XH UKLPICM CNRS, Ecole Polytechnique, Institute Polytechnique de Paris Palaiseau 91128 FranceLPICM CNRS, Ecole Polytechnique, Institute Polytechnique de Paris Palaiseau 91128 FranceCEA‐LITEN Université Grenoble‐Alpes Grenoble 38000 FranceDEERA University Rovira i Virgili Tarragona 43007 SpainAbstract There is increasing interest in using specialized circuits based on emerging technologies to develop a new generation of smart devices. The process and device variability exhibited by such materials, however, can present substantial challenges for designing circuits. Three models are considered here: a physical compact model, an empirical look‐up table, and an empirical surrogate model based on a multilayer perceptron (MLP) regression. Each one is fit to measurements of discrete organic thin film transistors in the low voltage regime. It is shown that the models provide consistent results when designing artificial neuron circuits, but that the MLP regression provides the highest accuracy and is much simpler to fit compared to the compact model. The targeted technology exhibits non‐ideal behavior such as variable threshold voltage and hysteresis. Using the MLP regression model, the effect of such variability on the performance of an artificial neuron circuit is compared. It is found that these effects alter the neuron firing rate and change the time spent in the on/off states but do not change the basic operation.https://doi.org/10.1002/aelm.202400515artificial neuron circuitscircuit simulationsdevice modellingorganic electronics
spellingShingle Laurie E. Calvet
Sami El‐Nakouzi
Zonglong Li
Yerin Kim
Amer Zaibi
Patryk Golec
Ie Mei Bhattacharyya
Yvan Bonnassieux
Lina Kadura
Benjamin Iñiguez
Simulating Organic Thin Film Transistors Using Multilayer Perceptron Regression Models to Enable Circuit Design
Advanced Electronic Materials
artificial neuron circuits
circuit simulations
device modelling
organic electronics
title Simulating Organic Thin Film Transistors Using Multilayer Perceptron Regression Models to Enable Circuit Design
title_full Simulating Organic Thin Film Transistors Using Multilayer Perceptron Regression Models to Enable Circuit Design
title_fullStr Simulating Organic Thin Film Transistors Using Multilayer Perceptron Regression Models to Enable Circuit Design
title_full_unstemmed Simulating Organic Thin Film Transistors Using Multilayer Perceptron Regression Models to Enable Circuit Design
title_short Simulating Organic Thin Film Transistors Using Multilayer Perceptron Regression Models to Enable Circuit Design
title_sort simulating organic thin film transistors using multilayer perceptron regression models to enable circuit design
topic artificial neuron circuits
circuit simulations
device modelling
organic electronics
url https://doi.org/10.1002/aelm.202400515
work_keys_str_mv AT laurieecalvet simulatingorganicthinfilmtransistorsusingmultilayerperceptronregressionmodelstoenablecircuitdesign
AT samielnakouzi simulatingorganicthinfilmtransistorsusingmultilayerperceptronregressionmodelstoenablecircuitdesign
AT zonglongli simulatingorganicthinfilmtransistorsusingmultilayerperceptronregressionmodelstoenablecircuitdesign
AT yerinkim simulatingorganicthinfilmtransistorsusingmultilayerperceptronregressionmodelstoenablecircuitdesign
AT amerzaibi simulatingorganicthinfilmtransistorsusingmultilayerperceptronregressionmodelstoenablecircuitdesign
AT patrykgolec simulatingorganicthinfilmtransistorsusingmultilayerperceptronregressionmodelstoenablecircuitdesign
AT iemeibhattacharyya simulatingorganicthinfilmtransistorsusingmultilayerperceptronregressionmodelstoenablecircuitdesign
AT yvanbonnassieux simulatingorganicthinfilmtransistorsusingmultilayerperceptronregressionmodelstoenablecircuitdesign
AT linakadura simulatingorganicthinfilmtransistorsusingmultilayerperceptronregressionmodelstoenablecircuitdesign
AT benjamininiguez simulatingorganicthinfilmtransistorsusingmultilayerperceptronregressionmodelstoenablecircuitdesign