Enhancing ecological uncertainty predictions in pollution control games through dynamic Bayesian updating

Abstract This study presents a dynamic Bayesian game model designed to improve predictions of ecological uncertainties leading to natural disasters. It incorporates historical signal data on ecological indicators. Participants, acting as decision-makers, receive signals about an unknown parameter-ob...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiangjing Zhou, Ovanes Petrosian, Hongwei Gao
Format: Article
Language:English
Published: Nature Portfolio 2024-06-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-024-63234-1
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This study presents a dynamic Bayesian game model designed to improve predictions of ecological uncertainties leading to natural disasters. It incorporates historical signal data on ecological indicators. Participants, acting as decision-makers, receive signals about an unknown parameter-observations of a random variable’s realization values before a specific time, offering insights into ecological uncertainties. The essence of the model lies in its dynamic Bayesian updating, where beliefs about unknown parameters are refined with each new signal, enhancing predictive accuracy. The main focus of our paper is to theoretically validate this approach, by presenting a number of theorems that prove its precision and efficiency in improving uncertainty estimations. Simulation results validate the model’s effectiveness in various scenarios, highlighting its role in refining natural disaster forecasts.
ISSN:2045-2322