Beyond MP2 initialization for unitary coupled cluster quantum circuits

The unitary coupled cluster (UCC) ansatz is a promising tool for achieving high-precision results using the variational quantum eigensolver (VQE) algorithm in the NISQ era. However, results on quantum hardware are thus far very limited and simulations have only accessed small system sizes. We advanc...

Full description

Saved in:
Bibliographic Details
Main Authors: Mark R. Hirsbrunner, Diana Chamaki, J. Wayne Mullinax, Norm M. Tubman
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2024-11-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2024-11-26-1538/pdf/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The unitary coupled cluster (UCC) ansatz is a promising tool for achieving high-precision results using the variational quantum eigensolver (VQE) algorithm in the NISQ era. However, results on quantum hardware are thus far very limited and simulations have only accessed small system sizes. We advance the state of the art of UCC simulations by utilizing an efficient sparse wavefunction circuit solver and studying systems up to 64 qubits. Here we report results obtained using this solver that demonstrate the power of the UCC ansatz and address pressing questions about optimal initial parameterizations and circuit construction, among others. Our approach enables meaningful benchmarking of the UCC ansatz, a crucial step in assessing the utility of VQE for achieving quantum advantage.
ISSN:2521-327X