Performance Evaluation of a Visual Defects Detection System for Railways Monitoring

SNCF Réseau introduces a novel multi-modal embedded monitoring system, addressing challenges in railway infrastructure maintenance. The design incorporates visual, inertial, and sound sensors, enhancing adaptability, improving overall detection precision, and could reduce operational costs. This stu...

Full description

Saved in:
Bibliographic Details
Main Authors: Radosavljevic Saša, Rivero Alain, Rodríguez Flórez Sergio, El Ouardi Abdelhafid, Michel Pauline, Bouamama Belkacem O., Vanheeghe Philippe
Format: Article
Language:English
Published: EDP Sciences 2024-01-01
Series:ITM Web of Conferences
Online Access:https://www.itm-conferences.org/articles/itmconf/pdf/2024/12/itmconf_maih2024_03002.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841554734244167680
author Radosavljevic Saša
Rivero Alain
Rodríguez Flórez Sergio
El Ouardi Abdelhafid
Michel Pauline
Bouamama Belkacem O.
Vanheeghe Philippe
author_facet Radosavljevic Saša
Rivero Alain
Rodríguez Flórez Sergio
El Ouardi Abdelhafid
Michel Pauline
Bouamama Belkacem O.
Vanheeghe Philippe
author_sort Radosavljevic Saša
collection DOAJ
description SNCF Réseau introduces a novel multi-modal embedded monitoring system, addressing challenges in railway infrastructure maintenance. The design incorporates visual, inertial, and sound sensors, enhancing adaptability, improving overall detection precision, and could reduce operational costs. This study addresses visual defects detection that can be integrated in a multi-modal monitoring system. The paper details the system’s architecture, synchronisation methods, and decision fusion process to improve the precision of limited mono-modal systems. A deep-learning visual based railway defects inspection was explored. Results show that small CNN (Yolov8 nano) can achieve similar (Yolov8 XL) high precision (mAP@0.5 ≥ 0.89) for a small number of objects (9) while improving implementation capability on embedded systems.
format Article
id doaj-art-d086621d8f4f4ecc86421dfe78595d3f
institution Kabale University
issn 2271-2097
language English
publishDate 2024-01-01
publisher EDP Sciences
record_format Article
series ITM Web of Conferences
spelling doaj-art-d086621d8f4f4ecc86421dfe78595d3f2025-01-08T10:58:54ZengEDP SciencesITM Web of Conferences2271-20972024-01-01690300210.1051/itmconf/20246903002itmconf_maih2024_03002Performance Evaluation of a Visual Defects Detection System for Railways MonitoringRadosavljevic Saša0https://orcid.org/0009-0007-1223-8488Rivero Alain1https://orcid.org/0000-0003-1044-4337Rodríguez Flórez Sergio2https://orcid.org/0000-0003-3029-7020El Ouardi Abdelhafid3https://orcid.org/0000-0003-3665-2185Michel Pauline4https://orcid.org/0000-0002-9743-2402Bouamama Belkacem O.5https://orcid.org/0000-0002-7905-0734Vanheeghe Philippe6SNCF RéseauSNCF RéseauUniversité Paris-Saclay, ENS Paris-Saclay, CNRS, SATIEUniversité Paris-Saclay, ENS Paris-Saclay, CNRS, SATIEUniversité Paris-Saclay, ENS Paris-Saclay, CNRS, SATIEUniversité de Lille, CNRS, UMR 9189 - CRIStALUniversité de Lille, CNRS, UMR 9189 - CRIStALSNCF Réseau introduces a novel multi-modal embedded monitoring system, addressing challenges in railway infrastructure maintenance. The design incorporates visual, inertial, and sound sensors, enhancing adaptability, improving overall detection precision, and could reduce operational costs. This study addresses visual defects detection that can be integrated in a multi-modal monitoring system. The paper details the system’s architecture, synchronisation methods, and decision fusion process to improve the precision of limited mono-modal systems. A deep-learning visual based railway defects inspection was explored. Results show that small CNN (Yolov8 nano) can achieve similar (Yolov8 XL) high precision (mAP@0.5 ≥ 0.89) for a small number of objects (9) while improving implementation capability on embedded systems.https://www.itm-conferences.org/articles/itmconf/pdf/2024/12/itmconf_maih2024_03002.pdf
spellingShingle Radosavljevic Saša
Rivero Alain
Rodríguez Flórez Sergio
El Ouardi Abdelhafid
Michel Pauline
Bouamama Belkacem O.
Vanheeghe Philippe
Performance Evaluation of a Visual Defects Detection System for Railways Monitoring
ITM Web of Conferences
title Performance Evaluation of a Visual Defects Detection System for Railways Monitoring
title_full Performance Evaluation of a Visual Defects Detection System for Railways Monitoring
title_fullStr Performance Evaluation of a Visual Defects Detection System for Railways Monitoring
title_full_unstemmed Performance Evaluation of a Visual Defects Detection System for Railways Monitoring
title_short Performance Evaluation of a Visual Defects Detection System for Railways Monitoring
title_sort performance evaluation of a visual defects detection system for railways monitoring
url https://www.itm-conferences.org/articles/itmconf/pdf/2024/12/itmconf_maih2024_03002.pdf
work_keys_str_mv AT radosavljevicsasa performanceevaluationofavisualdefectsdetectionsystemforrailwaysmonitoring
AT riveroalain performanceevaluationofavisualdefectsdetectionsystemforrailwaysmonitoring
AT rodriguezflorezsergio performanceevaluationofavisualdefectsdetectionsystemforrailwaysmonitoring
AT elouardiabdelhafid performanceevaluationofavisualdefectsdetectionsystemforrailwaysmonitoring
AT michelpauline performanceevaluationofavisualdefectsdetectionsystemforrailwaysmonitoring
AT bouamamabelkacemo performanceevaluationofavisualdefectsdetectionsystemforrailwaysmonitoring
AT vanheeghephilippe performanceevaluationofavisualdefectsdetectionsystemforrailwaysmonitoring