An adaptive compressive sensing method on hybrid-field channel estimation for a massive MIMO system
Massive MIMO (Multiple-input-multiple output), crucial for 5 G and Beyond 5 G (B5G) networks, faces challenges with terahertz frequencies in B5G as the communication shifts from far-field to near-field. This shift disrupts traditional Massive MIMO channel estimation, leading to increased pilot overh...
        Saved in:
      
    
          | Main Authors: | , , , | 
|---|---|
| Format: | Article | 
| Language: | English | 
| Published: | Elsevier
    
        2024-12-01 | 
| Series: | Alexandria Engineering Journal | 
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S1110016824008627 | 
| Tags: | Add Tag 
      No Tags, Be the first to tag this record!
   | 
| Summary: | Massive MIMO (Multiple-input-multiple output), crucial for 5 G and Beyond 5 G (B5G) networks, faces challenges with terahertz frequencies in B5G as the communication shifts from far-field to near-field. This shift disrupts traditional Massive MIMO channel estimation, leading to increased pilot overhead and limited performance. The current study used the hybrid-field orthogonal matching pursuit (HF-OMP) algorithm from the compressive sensing (CS) framework to estimate the channel with scatters from both far-field and near-field. The method, however, needs more flexibility regarding scatter location in the field of interest. Also, the usage of HF-OMP under a single measurement vector (SMV) scheme limits the overall performance of the existing method. To address these, we have proposed an adaptive hybrid-field simultaneous-OMP algorithm under multiple measurement vector (MMV) of the CS framework which selects multiple atoms having common support within a single iteration. This innovative approach tackles channel estimation for both far-field and near-field scatters while adapting to their varying distributions. Compared to classical methods, simulations show the new algorithm achieves up to a 14 % improvement in normalized mean square error within a 0 dB to 10 dB signal-to-noise ratio range. This translates to significant reductions in pilot overhead and enhanced channel reliability, paving the way for more efficient and robust wireless networks in the future. | 
|---|---|
| ISSN: | 1110-0168 | 
 
       