Application of Deep Learning to Diagnose and Classify Adolescent Idiopathic Scoliosis

A deep learning-based model for automatic diagnosis and classification of adolescent idiopathic scoliosis has been constructed. This model mainly included key points detection and Cobb angle measurement. 748 full-length standing spinal X-ray images were retrospectively collected, of which 602 images...

Full description

Saved in:
Bibliographic Details
Main Authors: Kunjie XIE, Wei LEI, Suping ZHU, Yaopeng CHEN, Jincong LIN, Yi LI, Yabo YAN
Format: Article
Language:zho
Published: Editorial Office of Chinese Journal of Medical Instrumentation 2024-03-01
Series:Zhongguo yiliao qixie zazhi
Subjects:
Online Access:https://zgylqxzz.xml-journal.net/article/doi/10.12455/j.issn.1671-7104.230700
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A deep learning-based model for automatic diagnosis and classification of adolescent idiopathic scoliosis has been constructed. This model mainly included key points detection and Cobb angle measurement. 748 full-length standing spinal X-ray images were retrospectively collected, of which 602 images were used to train and validate the model, and 146 images were used to test the model performance. The results showed that the model had good diagnostic and classification performance, with an accuracy of 94.5%. Compared with experts' measurement, 94.9% of its Cobb angle measurement results were within the clinically acceptable range. The average absolute difference was 2.1°, and the consistency was also excellent (r2≥0.9552, P<0.001). In the future, this model could be applied clinically to improve doctors' diagnostic efficiency.
ISSN:1671-7104