Fabry–Pérot cavity smart windows with superior solar and thermal modulation capabilities

Smart windows are an important strategy to reduce the energy consumption in buildings, which accounts for as much as 30%–40% of the society's energy consumption. VO2-based thermochromic materials can intelligently regulate the solar heat gains of building interiors. However, the unmatched therm...

Full description

Saved in:
Bibliographic Details
Main Authors: Jin Li, Chunhui Zhang, Yunxiang Chen, Ke Jiao, Zhang Chen, Yifei Liu, Yanfeng Gao, Zongtao Zhang
Format: Article
Language:English
Published: Elsevier 2025-03-01
Series:Journal of Materiomics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352847824000868
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Smart windows are an important strategy to reduce the energy consumption in buildings, which accounts for as much as 30%–40% of the society's energy consumption. VO2-based thermochromic materials can intelligently regulate the solar heat gains of building interiors. However, the unmatched thermal emissivity (ɛ) modulation of traditional VO2/glass systems, i.e., high emissivity at low temperatures and low emissivity at high temperatures, leads to additional heating and cooling energy loads in winter and summer, respectively. In this study, we propose a novel VO2/polyacrylonitrile (PAN)/AgNW multilayer possessing flexible Ag nanowire supported Fabry–Pérot cavities, which synchronously achieves high modulation abilities in both solar spectrum (ΔTsol of 13.6%) and middle infrared region (Δɛ of 0.50 at 8–13 μm). These achievements are the best among reports for pure VO2 smart windows. This study provides a flexible and effective protocol to dynamically enhance the light and heat utilization for practical building windows.
ISSN:2352-8478