Peculiar proteome of dark-cultivated Euglena gracilis

Abstract Euglena gracilis is a flagellate photosynthetic microalga that, thanks to its metabolic adaptability, can grow under both autotrophic and heterotrophic conditions. This adaptability makes euglena an interesting species for applied biotechnology. We focused on the proteome of E. gracilis cul...

Full description

Saved in:
Bibliographic Details
Main Authors: Adriana Paprčková, Katarína Klubicová, Eva Ürgeová, Maksym Danchenko, Peter Baráth, Olha Lakhneko, Juraj Krajčovič, Ľubica Uváčková
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-11308-z
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Euglena gracilis is a flagellate photosynthetic microalga that, thanks to its metabolic adaptability, can grow under both autotrophic and heterotrophic conditions. This adaptability makes euglena an interesting species for applied biotechnology. We focused on the proteome of E. gracilis cultivated in Cramer-Myers medium (supplemented with ethanol) in dark and light conditions. Cultures grown in the light showed a characteristic green coloration, while cultures incubated in the dark were bright yellow. When cultured in the dark, microalga showed reduced concentration of chlorophylls (a, b, and total) and carotenoids compared to cells cultured in the light. Conversely, there was an increase in proline content in the dark compared to light cultivation. Using proteomic approach, we revealed 162 differentially accumulated proteins in light- and dark-grown cells classified into 12 functional groups. Notably, alterations in the metabolism of fatty acids and amino acids, secondary metabolism, and accumulation of stress- and detoxification-related proteins in microalgal cells cultivated in darkness with ethanol as a carbon source may help euglena adapt to these conditions. Based on our results and literature, we hypothesize that vitamin B12 potentially plays an important role in light/dark metabolic switch, similarly as in bacteria.
ISSN:2045-2322