Catalytic conversion of biomass-derived 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid using novel cobalt-based MOF in the presence of deep eutectic solvents

Abstract The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introd...

Full description

Saved in:
Bibliographic Details
Main Authors: Samaneh Sedigh Ashrafi, Behrooz Maleki
Format: Article
Language:English
Published: Nature Portfolio 2024-12-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-024-82844-3
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introduce UoM-1 (UoM, University of Mazandaran), a novel cobalt-based metal-organic framework (Co-MOF) synthesized using a simple one-step ultrasonic irradiation method. The synthesis employed the ligand 4,4’-((1E,1’E)-((5-carboxy-1,3-phenylene)bis(azaneylylidene))bis (methaneylylidene))dibenzoic acid (H3bdda). A comprehensive suite of analytical techniques, including FT-IR, EDX, ICP, XRD, TEM, DLS, FESEM, and BET-BJH, was used to confirm the structural integrity of the synthesized material. The catalytic performance of UoM-1 was investigated for the selective conversion of HMF to HMFCA, demonstrating its effectiveness as a low-cost, accessible catalyst. To promote a more sustainable and environmentally friendly approach, the oxidation reactions were performed in deep eutectic solvents, which offer a green, low-energy alternative to traditional solvents. This study shows that the UoM-1 catalyst not only provides an economical solution but also aligns with modern green chemistry principles, making it a highly promising candidate for future catalytic applications.
ISSN:2045-2322