Premature birth changes wiring constraints in neonatal structural brain networks

Abstract Structural brain organization in infancy is associated with later cognitive, behavioral, and educational outcomes. Due to practical limitations, such as technological advancements and data availability of fetal MRI, there is still much we do not know about the early emergence of topological...

Full description

Saved in:
Bibliographic Details
Main Authors: Alexa Mousley, Danyal Akarca, Duncan E. Astle
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55178-x
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Structural brain organization in infancy is associated with later cognitive, behavioral, and educational outcomes. Due to practical limitations, such as technological advancements and data availability of fetal MRI, there is still much we do not know about the early emergence of topological organization. We combine the developing Human Connectome Project’s large infant dataset with generative network modeling to simulate the emergence of network organization over early development. Preterm infants had reduced connectivity, shorter connection lengths, and lower network efficiency compared to term-born infants. The models were able to recapitulate the organizational differences between term and preterm networks and revealed that preterm infant networks are better simulated under tighter wiring constraints than term infants. Tighter constraints for preterm models resulted in shorter connection lengths while preserving vital, long-range rich club connections. These simulations suggest that preterm birth is associated with a renegotiation of the cost-value wiring trade-off that may drive the emergence of different network organization.
ISSN:2041-1723