Phase Stability and Transitions in High-Entropy Alloys: Insights from Lattice Gas Models, Computational Simulations, and Experimental Validation

High-entropy alloys (HEAs) are a novel class of metallic materials composed of five or more principal elements in near-equimolar ratios. This unconventional composition leads to high configurational entropy, which promotes the formation of solid solution phases with enhanced mechanical properties, t...

Full description

Saved in:
Bibliographic Details
Main Author: Łukasz Łach
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/5/464
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-entropy alloys (HEAs) are a novel class of metallic materials composed of five or more principal elements in near-equimolar ratios. This unconventional composition leads to high configurational entropy, which promotes the formation of solid solution phases with enhanced mechanical properties, thermal stability, and corrosion resistance. Phase stability plays a critical role in determining their structural integrity and performance. This study provides a focused review of HEA phase transitions, emphasizing the role of lattice gas models in predicting phase behavior. By integrating statistical mechanics with thermodynamic principles, lattice gas models enable accurate modeling of atomic interactions, phase segregation, and order-disorder transformations. The combination of computational simulations (e.g., Monte Carlo, molecular dynamics) with experimental validation (e.g., XRD, TEM, APT) improves predictive accuracy. Furthermore, advances in data-driven methodologies facilitate high-throughput exploration of HEA compositions, accelerating the discovery of alloys with optimized phase stability and superior mechanical performance. Beyond structural applications, HEAs demonstrate potential in functional domains, such as catalysis, hydrogen storage, and energy technologies. This review brings together theoretical modeling—particularly lattice gas approaches—and experimental validation to form a unified understanding of phase behavior in high-entropy alloys. By highlighting the mechanisms behind phase transitions and their implications for material performance, this work aims to support the design and optimization of HEAs for real-world applications in aerospace, energy systems, and structural materials engineering.
ISSN:1099-4300