High-efficiency 90Sr radio-photovoltaic cells based on waveguide light concentration structure

Abstract Radio-photovoltaic cells (RPVCs) are able to offer high reliability and extended operational lifetimes, making them ideal for harsh-environment applications. However, the two-stage energy conversion process inherently limits energy conversion efficiency (ECE). This study presents a novel RP...

Full description

Saved in:
Bibliographic Details
Main Authors: Tongxin Jiang, Sijie Li, Wenlong Yao, Lu Han, Lei Zhang, Xue Li, Lifeng Zhang, Xian Tang, Xin Li, Haisheng San
Format: Article
Language:English
Published: Nature Publishing Group 2025-06-01
Series:Light: Science & Applications
Online Access:https://doi.org/10.1038/s41377-025-01875-1
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849329370251919360
author Tongxin Jiang
Sijie Li
Wenlong Yao
Lu Han
Lei Zhang
Xue Li
Lifeng Zhang
Xian Tang
Xin Li
Haisheng San
author_facet Tongxin Jiang
Sijie Li
Wenlong Yao
Lu Han
Lei Zhang
Xue Li
Lifeng Zhang
Xian Tang
Xin Li
Haisheng San
author_sort Tongxin Jiang
collection DOAJ
description Abstract Radio-photovoltaic cells (RPVCs) are able to offer high reliability and extended operational lifetimes, making them ideal for harsh-environment applications. However, the two-stage energy conversion process inherently limits energy conversion efficiency (ECE). This study presents a novel RPVC design based on a waveguide light concentration (WLC) scheme, employing multilayer-stacked GAGG:Ce scintillation waveguides alternately loaded with 90Sr radioisotope sources. Electron beam irradiation tests revealed highly efficient radioluminescence (RL) emission from the edge surfaces of GAGG:Ce waveguide at electron energies exceeding 60 keV. A RPVC prototype incorporating 1.43 Ci of ⁹⁰Sr achieved a maximum output power (P max) of 48.9 μW, with an unprecedented ECE of 2.96%—the highest reported value for radioisotope-powered RPVCs to date. Furthermore, a multi-module integrated RPVC prototype demonstrated a P max of 3.17 mW, with a short circuit current of 2.23 mA and an open circuit voltage of 2.14 V. Remarkably, the device exhibited only 13.8% RL performance degradation after a 50-year equivalent electron beam irradiation (total fluence: 5.625 × 1018 e/cm2), confirming exceptional radiation hardness. These findings demonstrate that the WLC-based RPVCs achieve both high power output and exceptional long-term stability, representing a substantial advancement for facilitating nuclear battery applications.
format Article
id doaj-art-cb3eeac4b6af43e18c1fef96caa62eab
institution Kabale University
issn 2047-7538
language English
publishDate 2025-06-01
publisher Nature Publishing Group
record_format Article
series Light: Science & Applications
spelling doaj-art-cb3eeac4b6af43e18c1fef96caa62eab2025-08-20T03:47:17ZengNature Publishing GroupLight: Science & Applications2047-75382025-06-011411910.1038/s41377-025-01875-1High-efficiency 90Sr radio-photovoltaic cells based on waveguide light concentration structureTongxin Jiang0Sijie Li1Wenlong Yao2Lu Han3Lei Zhang4Xue Li5Lifeng Zhang6Xian Tang7Xin Li8Haisheng San9Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen UniversityChina Institute of Atomic EnergyPen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen UniversityChina Institute of Atomic EnergyChina Institute of Atomic EnergyChina Institute of Atomic EnergyChina Institute of Atomic EnergyChina Institute of Atomic EnergyChina Institute of Atomic EnergyPen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen UniversityAbstract Radio-photovoltaic cells (RPVCs) are able to offer high reliability and extended operational lifetimes, making them ideal for harsh-environment applications. However, the two-stage energy conversion process inherently limits energy conversion efficiency (ECE). This study presents a novel RPVC design based on a waveguide light concentration (WLC) scheme, employing multilayer-stacked GAGG:Ce scintillation waveguides alternately loaded with 90Sr radioisotope sources. Electron beam irradiation tests revealed highly efficient radioluminescence (RL) emission from the edge surfaces of GAGG:Ce waveguide at electron energies exceeding 60 keV. A RPVC prototype incorporating 1.43 Ci of ⁹⁰Sr achieved a maximum output power (P max) of 48.9 μW, with an unprecedented ECE of 2.96%—the highest reported value for radioisotope-powered RPVCs to date. Furthermore, a multi-module integrated RPVC prototype demonstrated a P max of 3.17 mW, with a short circuit current of 2.23 mA and an open circuit voltage of 2.14 V. Remarkably, the device exhibited only 13.8% RL performance degradation after a 50-year equivalent electron beam irradiation (total fluence: 5.625 × 1018 e/cm2), confirming exceptional radiation hardness. These findings demonstrate that the WLC-based RPVCs achieve both high power output and exceptional long-term stability, representing a substantial advancement for facilitating nuclear battery applications.https://doi.org/10.1038/s41377-025-01875-1
spellingShingle Tongxin Jiang
Sijie Li
Wenlong Yao
Lu Han
Lei Zhang
Xue Li
Lifeng Zhang
Xian Tang
Xin Li
Haisheng San
High-efficiency 90Sr radio-photovoltaic cells based on waveguide light concentration structure
Light: Science & Applications
title High-efficiency 90Sr radio-photovoltaic cells based on waveguide light concentration structure
title_full High-efficiency 90Sr radio-photovoltaic cells based on waveguide light concentration structure
title_fullStr High-efficiency 90Sr radio-photovoltaic cells based on waveguide light concentration structure
title_full_unstemmed High-efficiency 90Sr radio-photovoltaic cells based on waveguide light concentration structure
title_short High-efficiency 90Sr radio-photovoltaic cells based on waveguide light concentration structure
title_sort high efficiency 90sr radio photovoltaic cells based on waveguide light concentration structure
url https://doi.org/10.1038/s41377-025-01875-1
work_keys_str_mv AT tongxinjiang highefficiency90srradiophotovoltaiccellsbasedonwaveguidelightconcentrationstructure
AT sijieli highefficiency90srradiophotovoltaiccellsbasedonwaveguidelightconcentrationstructure
AT wenlongyao highefficiency90srradiophotovoltaiccellsbasedonwaveguidelightconcentrationstructure
AT luhan highefficiency90srradiophotovoltaiccellsbasedonwaveguidelightconcentrationstructure
AT leizhang highefficiency90srradiophotovoltaiccellsbasedonwaveguidelightconcentrationstructure
AT xueli highefficiency90srradiophotovoltaiccellsbasedonwaveguidelightconcentrationstructure
AT lifengzhang highefficiency90srradiophotovoltaiccellsbasedonwaveguidelightconcentrationstructure
AT xiantang highefficiency90srradiophotovoltaiccellsbasedonwaveguidelightconcentrationstructure
AT xinli highefficiency90srradiophotovoltaiccellsbasedonwaveguidelightconcentrationstructure
AT haishengsan highefficiency90srradiophotovoltaiccellsbasedonwaveguidelightconcentrationstructure